-
C#教程之C#实现的最短路径分析
代码如下:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace ConsoleApplication1
{
class Program
{
static int length = 6;
static string[] shortedPath = new string[length];
static int noPath = 2000;
static int MaxSize = 1000;
static int[,] G =
{
{ noPath, noPath, 10, noPath, 30, 100 },
{ noPath, noPath, 5, noPath, noPath, noPath },
{ noPath, noPath, noPath, 50, noPath, noPath },
{ noPath, noPath, noPath, noPath, noPath, 10 },
{ noPath, noPath, noPath, 20, noPath, 60 },
{ noPath, noPath, noPath, noPath, noPath, noPath }
};
static string[] PathResult = new string[length];
static int[] path1 = new int[length];
static int[,] path2 = new int[length, length];
static int[] distance2 = new int[length];
static void Main(string[] args)
{
int dist1 = getShortedPath(G, 0, 1, path1);
Console.WriteLine("点0到点5路径:");
for (int i = 0; i < path1.Length; i++)
Console.Write(path1[i].ToString() + " ");
Console.WriteLine("长度:" + dist1);
Console.WriteLine("\r\n-----------------------------------------\r\n");
int[] pathdist = getShortedPath(G, 0, path2);
Console.WriteLine("点0到任意点的路径:");
for (int j = 0; j < pathdist.Length; j++)
{
Console.WriteLine("点0到" + j + "的路径:");
for (int i = 0; i < length; i++)
Console.Write(path2[j, i].ToString() + " ");
Console.WriteLine("长度:" + pathdist[j]);
}
Console.ReadKey();
}
//从某一源点出发,找到到某一结点的最短路径
static int getShortedPath(int[,]G, int start, int end,int [] path)
{
bool[] s = new bool[length]; //表示找到起始结点与当前结点间的最短路径
int min; //最小距离临时变量
int curNode=0; //临时结点,记录当前正计算结点
int[] dist = new int[length];
int[] prev = new int[length];
//初始结点信息
for (int v = 0; v < length; v++)
{
s[v] = false;
dist[v] = G[start, v];
if (dist[v] > MaxSize)
prev[v] = 0;
else
prev[v] = start;
}
path[0] = end;
dist[start] = 0;
s[start] = true;
//主循环
for (int i = 1; i < length; i++)
{
min = MaxSize;
for (int w = 0; w < length; w++)
{
if (!s[w] && dist[w] < min)
{
curNode = w;
min = dist[w];
}
}
s[curNode] = true;
for (int j = 0; j < length; j++)
if (!s[j] && min + G[curNode, j] < dist[j])
{
dist[j] = min + G[curNode, j];
prev[j] = curNode;
}
}
//输出路径结点
int e = end, step = 0;
while (e != start)
{
step++;
path[step] = prev[e];
e = prev[e];
}
for (int i = step; i > step/2; i--)
{
int temp = path[step - i];
path[step - i] = path[i];
path[i] = temp;
}
return dist[end];
}
//从某一源点出发,找到到所有结点的最短路径
static int[] getShortedPath(int[,] G, int start, int[,] path)
{
int[] PathID = new int[length];//路径(用编号表示)
bool[] s = new bool[length]; //表示找到起始结点与当前结点间的最短路径
int min; //最小距离临时变量
int curNode = 0; //临时结点,记录当前正计算结点
int[] dist = new int[length];
int[] prev = new int[length];
//初始结点信息
for (int v = 0; v < length; v++)
{
s[v] = false;
dist[v] = G[start, v];
if (dist[v] > MaxSize)
prev[v] = 0;
else
prev[v] = start;
path[v,0] = v;
}
dist[start] = 0;
s[start] = true;
//主循环
for (int i = 1; i < length; i++)
{
min = MaxSize;
for (int w = 0; w < length; w++)
{
if (!s[w] && dist[w] < min)
{
curNode = w;
min = dist[w];
}
}
s[curNode] = true;
for (int j = 0; j < length; j++)
if (!s[j] && min + G[curNode, j] < dist[j])
{
dist[j] = min + G[curNode, j];
prev[j] = curNode;
}
}
//输出路径结点
for (int k = 0; k < length; k++)
{
int e = k, step = 0;
while (e != start)
{
step++;
path[k, step] = prev[e];
e = prev[e];
}
for (int i = step; i > step / 2; i--)
{
int temp = path[k, step - i];
path[k, step - i] = path[k, i];
path[k, i] = temp;
}
}
return dist;
}
}
}
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
SQL Server -- 解决存储过程传入参数作为s
JavaScript判断两个数组相等的四类方法
js如何操作video标签
React实战--利用甘特图和看板,强化Paas平
【记录】正则替换的偏方
前端下载 Blob 类型整理
抽象语法树AST必知必会
关于JS定时器的整理
JS中使用Promise.all控制所有的异步请求都完
js中字符串的方法
import-local执行流程与node模块路径解析流程