当前位置:
首页 > 编程开发 > Objective-C编程 >
-
c#泛型学习之泛型介绍
制作者:剑锋冷月 单位:无忧统计网,www.51stat.net
什么是泛型
一种类型占位符,或称之为类型参数。我们知道在一个方法中,一个变量的值可以作为参数,但其实这个变量的类型本身也可以作为参数。泛型允许我们在调用的时候再指定这个类型参数是什么。在.net中,泛型能够给我们带来的两个明显好处是——类型安全和减少装箱、拆箱。
类型安全和装箱、拆箱
作为一种类型参数,泛型很容易给我们带来类型安全。而在以前,在.net1.1中我们要实现类型安全可以这样做 :
//假设你有一个人员集合
public class Person{
private string _name;
public string Name
{ get { return _name; }
set { _name = value;}}
}
//假设你有一个人员集合
public class PersonCollection : IList
{
...
private ArrayList _Persons = new ArrayList();
public Person this[int index]
{ get { return (Person)_Persons[index]; } }
public int Add(Person item)
{ _Persons.Add(item);
return _Persons.Count - 1;}
public void Remove(Person item)
{ _Persons.Remove(item); }
object IList.this[int index]
{ get { return _Persons[index]; }
set { _Persons[index] = (Person)value; }}
int IList.Add(object item)
{ return Add((Person)item); }
void IList.Remove(object item)
{ Remove((Person)item); }
...
}
上述代码主要采用了显性接口成员(explicit interface member implementation)技术,能够实现类型安全,但问题是:
·产生重复代码。假设你还有一个Dog类集合,其功能相同,但为了类型安全,你必须要Copy一份代码,这样便使程序重复代码增加,当面对变化的时候,更难维护。
public class DogCollection : IList
{
...
private ArrayList _Dogs = new ArrayList();
public Dog this[int index]
{ get { return (Dog)_Dogs[index]; } }
public int Add(Dog item)
{ _Dogs.Add(item);
return _Dogs.Count - 1;}
public void Remove(Dog item)
{ _Dogs.Remove(item); }
object IList.this[int index]
{ get { return _Dogs[index]; }
set { _Dogs[index] = (Dog)value; }}
int IList.Add(object item)
{ return Add((Dog)item); }
void IList.Remove(object item)
{ Remove((Dog)item); }
...
}
如果在泛型中,要实现类型安全,你不需要拷贝任何代码,你仅仅需要这样做:
List<Person> persons = new List<Person>();
persons.Add(new Person());
Person person = persons[0];
List<Dog> dogs = new List<Dog>();
dogs.Add(new Dog());
Dog dog = dogs[0];
·对于值类型的对象还是需要额外的装箱、拆箱。其实对于传统的集合来说,只要其中的包含的内容涉及到值类型,就不可避免需要装箱、拆箱。请看下面的例子。
public class IntCollection : IList
{
...
private ArrayList _Ints = new ArrayList();
public int this[int index]
{ get { return (int)_Ints[index]; } }
public int Add(int item)
{ _Ints.Add(item);
return _Ints.Count - 1;}
public void Remove(int item)
{ _Ints.Remove(item); }
object IList.this[int index]
{ get { return _Ints[index]; }
set { _Ints[index] = (int)value; }}
int IList.Add(object item)
{ return Add((int)item); }
void IList.Remove(object item)
{ Remove((int)item); }
...
}
static void Main(string[] args)
{ IntCollection ints = new IntCollection();
ints.Add(5); //装箱
int i = ints[0]; //拆箱
}
少量装箱、拆箱对性能的影响不大,但是如果集合的数据量非常大,对性能还是有一定影响的。泛型能够避免对值类型的装箱、拆箱操作,您可以通过分析编译后的IL得到印证。
static void Main()
{
List<int> ints = new List<int>();
ints.Add(5); //不用装箱
int i = ints[0]; //不用拆箱
}
泛型的实现
·泛型方法
static void Swap<T>(ref T a, ref T b)
{ Console.WriteLine("You sent the Swap() method a {0}",
typeof(T));
T temp;
temp = a;
a = b;
b = temp;
}
·泛型类、结构
public class Point<T>
{
private T _x;
private T _y;
public T X
{ get { return _x; }
set { _x = value; }}
public T Y
{ get { return _y; }
set { _y = value; }}
public override string ToString()
{ return string.Format("[{0}, {1}]", _x, _y); }
}
泛型的Where
泛型的Where能够对类型参数作出限定。有以下几种方式。
·where T : struct 限制类型参数T必须继承自System.ValueType。
·where T : class 限制类型参数T必须是引用类型,也就是不能继承自System.ValueType。
·where T : new() 限制类型参数T必须有一个缺省的构造函数
·where T : NameOfClass 限制类型参数T必须继承自某个类或实现某个接口。
以上这些限定可以组合使用,比如: public class Point<T> where T : class, IComparable, new()
泛型的机制
·机制:
C#泛型代码在被编译为IL代码和无数据时,采用特殊的占位符来表示泛型类型,并用专有的IL指令支持泛型操作。而真正的泛型实例化工作以"on-demand"的方式,发生在JIT编译时。
·编译机制:
1. 第一轮编译时,编译器只为Stack<T>(栈算法)类型产生“泛型版”的IL代码与元数据-----并不进行泛型类型的实例化,T在中间只充当占位符
2. JIT编译时,当JIT编译器第一次遇到Stack<int>时,将用int替换“泛型版”IL代码与元数据中的T---进行泛型类型的实例化。CLR为所有类型参数为“引用类型”的泛型类型产生同一份代码;但如果类型参数为“值类型”,对每一个不同的“值类型”,CLR将为其产生一份独立的代码。
泛型的一些问题
·不支持操作符重载。我只知道这么多了
范型的意义
泛型的意义何在?类型安全和减少装箱、拆箱并不是泛型的意义,而是泛型带来的两个好处而已(或许在.net泛型中,这是最明显的好处了)。泛型的意义在于——把类型作为参数,它实现了代码之间的很好的横向联系,我们知道继承为代码提供了一种从上往下的纵向联系,但泛型提供了方便的横向联系(从某种程度上说,它和AOP在思想上有相通之处)。在PersonCollection例子中,我们知道Add()方法和Remove()方法的参数类型相同,但我们明确无法告诉我们的程序这一点,泛型提供了一种机制,让程序知道这些。道理虽然简单,但这样的机制或许能给我们的程序带来一些深远的变化吧。
·产生重复代码。假设你还有一个Dog类集合,其功能相同,但为了类型安全,你必须要Copy一份代码,这样便使程序重复代码增加,当面对变化的时候,更难维护。
public class DogCollection : IList
{
...
private ArrayList _Dogs = new ArrayList();
public Dog this[int index]
{ get { return (Dog)_Dogs[index]; } }
public int Add(Dog item)
{ _Dogs.Add(item);
return _Dogs.Count - 1;}
public void Remove(Dog item)
{ _Dogs.Remove(item); }
object IList.this[int index]
{ get { return _Dogs[index]; }
set { _Dogs[index] = (Dog)value; }}
int IList.Add(object item)
{ return Add((Dog)item); }
void IList.Remove(object item)
{ Remove((Dog)item); }
...
}
如果在泛型中,要实现类型安全,你不需要拷贝任何代码,你仅仅需要这样做:
List<Person> persons = new List<Person>();
persons.Add(new Person());
Person person = persons[0];
List<Dog> dogs = new List<Dog>();
dogs.Add(new Dog());
Dog dog = dogs[0];
·对于值类型的对象还是需要额外的装箱、拆箱。其实对于传统的集合来说,只要其中的包含的内容涉及到值类型,就不可避免需要装箱、拆箱。请看下面的例子。
public class IntCollection : IList
{
...
private ArrayList _Ints = new ArrayList();
public int this[int index]
{ get { return (int)_Ints[index]; } }
public int Add(int item)
{ _Ints.Add(item);
return _Ints.Count - 1;}
public void Remove(int item)
{ _Ints.Remove(item); }
object IList.this[int index]
{ get { return _Ints[index]; }
set { _Ints[index] = (int)value; }}
int IList.Add(object item)
{ return Add((int)item); }
void IList.Remove(object item)
{ Remove((int)item); }
...
}
static void Main(string[] args)
{ IntCollection ints = new IntCollection();
ints.Add(5); //装箱
int i = ints[0]; //拆箱
}
什么是泛型
一种类型占位符,或称之为类型参数。我们知道在一个方法中,一个变量的值可以作为参数,但其实这个变量的类型本身也可以作为参数。泛型允许我们在调用的时候再指定这个类型参数是什么。在.net中,泛型能够给我们带来的两个明显好处是——类型安全和减少装箱、拆箱。
类型安全和装箱、拆箱
作为一种类型参数,泛型很容易给我们带来类型安全。而在以前,在.net1.1中我们要实现类型安全可以这样做 :
//假设你有一个人员集合
public class Person{
private string _name;
public string Name
{ get { return _name; }
set { _name = value;}}
}
//假设你有一个人员集合
public class PersonCollection : IList
{
...
private ArrayList _Persons = new ArrayList();
public Person this[int index]
{ get { return (Person)_Persons[index]; } }
public int Add(Person item)
{ _Persons.Add(item);
return _Persons.Count - 1;}
public void Remove(Person item)
{ _Persons.Remove(item); }
object IList.this[int index]
{ get { return _Persons[index]; }
set { _Persons[index] = (Person)value; }}
int IList.Add(object item)
{ return Add((Person)item); }
void IList.Remove(object item)
{ Remove((Person)item); }
...
}
上述代码主要采用了显性接口成员(explicit interface member implementation)技术,能够实现类型安全,但问题是:
·产生重复代码。假设你还有一个Dog类集合,其功能相同,但为了类型安全,你必须要Copy一份代码,这样便使程序重复代码增加,当面对变化的时候,更难维护。
public class DogCollection : IList
{
...
private ArrayList _Dogs = new ArrayList();
public Dog this[int index]
{ get { return (Dog)_Dogs[index]; } }
public int Add(Dog item)
{ _Dogs.Add(item);
return _Dogs.Count - 1;}
public void Remove(Dog item)
{ _Dogs.Remove(item); }
object IList.this[int index]
{ get { return _Dogs[index]; }
set { _Dogs[index] = (Dog)value; }}
int IList.Add(object item)
{ return Add((Dog)item); }
void IList.Remove(object item)
{ Remove((Dog)item); }
...
}
如果在泛型中,要实现类型安全,你不需要拷贝任何代码,你仅仅需要这样做:
List<Person> persons = new List<Person>();
persons.Add(new Person());
Person person = persons[0];
List<Dog> dogs = new List<Dog>();
dogs.Add(new Dog());
Dog dog = dogs[0];
·对于值类型的对象还是需要额外的装箱、拆箱。其实对于传统的集合来说,只要其中的包含的内容涉及到值类型,就不可避免需要装箱、拆箱。请看下面的例子。
public class IntCollection : IList
{
...
private ArrayList _Ints = new ArrayList();
public int this[int index]
{ get { return (int)_Ints[index]; } }
public int Add(int item)
{ _Ints.Add(item);
return _Ints.Count - 1;}
public void Remove(int item)
{ _Ints.Remove(item); }
object IList.this[int index]
{ get { return _Ints[index]; }
set { _Ints[index] = (int)value; }}
int IList.Add(object item)
{ return Add((int)item); }
void IList.Remove(object item)
{ Remove((int)item); }
...
}
static void Main(string[] args)
{ IntCollection ints = new IntCollection();
ints.Add(5); //装箱
int i = ints[0]; //拆箱
}
少量装箱、拆箱对性能的影响不大,但是如果集合的数据量非常大,对性能还是有一定影响的。泛型能够避免对值类型的装箱、拆箱操作,您可以通过分析编译后的IL得到印证。
static void Main()
{
List<int> ints = new List<int>();
ints.Add(5); //不用装箱
int i = ints[0]; //不用拆箱
}
泛型的实现
·泛型方法
static void Swap<T>(ref T a, ref T b)
{ Console.WriteLine("You sent the Swap() method a {0}",
typeof(T));
T temp;
temp = a;
a = b;
b = temp;
}
·泛型类、结构
public class Point<T>
{
private T _x;
private T _y;
public T X
{ get { return _x; }
set { _x = value; }}
public T Y
{ get { return _y; }
set { _y = value; }}
public override string ToString()
{ return string.Format("[{0}, {1}]", _x, _y); }
}
泛型的Where
泛型的Where能够对类型参数作出限定。有以下几种方式。
·where T : struct 限制类型参数T必须继承自System.ValueType。
·where T : class 限制类型参数T必须是引用类型,也就是不能继承自System.ValueType。
·where T : new() 限制类型参数T必须有一个缺省的构造函数
·where T : NameOfClass 限制类型参数T必须继承自某个类或实现某个接口。
以上这些限定可以组合使用,比如: public class Point<T> where T : class, IComparable, new()
泛型的机制
·机制:
C#泛型代码在被编译为IL代码和无数据时,采用特殊的占位符来表示泛型类型,并用专有的IL指令支持泛型操作。而真正的泛型实例化工作以"on-demand"的方式,发生在JIT编译时。
·编译机制:
1. 第一轮编译时,编译器只为Stack<T>(栈算法)类型产生“泛型版”的IL代码与元数据-----并不进行泛型类型的实例化,T在中间只充当占位符
2. JIT编译时,当JIT编译器第一次遇到Stack<int>时,将用int替换“泛型版”IL代码与元数据中的T---进行泛型类型的实例化。CLR为所有类型参数为“引用类型”的泛型类型产生同一份代码;但如果类型参数为“值类型”,对每一个不同的“值类型”,CLR将为其产生一份独立的代码。
泛型的一些问题
·不支持操作符重载。我只知道这么多了
范型的意义
泛型的意义何在?类型安全和减少装箱、拆箱并不是泛型的意义,而是泛型带来的两个好处而已(或许在.net泛型中,这是最明显的好处了)。泛型的意义在于——把类型作为参数,它实现了代码之间的很好的横向联系,我们知道继承为代码提供了一种从上往下的纵向联系,但泛型提供了方便的横向联系(从某种程度上说,它和AOP在思想上有相通之处)。在PersonCollection例子中,我们知道Add()方法和Remove()方法的参数类型相同,但我们明确无法告诉我们的程序这一点,泛型提供了一种机制,让程序知道这些。道理虽然简单,但这样的机制或许能给我们的程序带来一些深远的变化吧。
·产生重复代码。假设你还有一个Dog类集合,其功能相同,但为了类型安全,你必须要Copy一份代码,这样便使程序重复代码增加,当面对变化的时候,更难维护。
public class DogCollection : IList
{
...
private ArrayList _Dogs = new ArrayList();
public Dog this[int index]
{ get { return (Dog)_Dogs[index]; } }
public int Add(Dog item)
{ _Dogs.Add(item);
return _Dogs.Count - 1;}
public void Remove(Dog item)
{ _Dogs.Remove(item); }
object IList.this[int index]
{ get { return _Dogs[index]; }
set { _Dogs[index] = (Dog)value; }}
int IList.Add(object item)
{ return Add((Dog)item); }
void IList.Remove(object item)
{ Remove((Dog)item); }
...
}
如果在泛型中,要实现类型安全,你不需要拷贝任何代码,你仅仅需要这样做:
List<Person> persons = new List<Person>();
persons.Add(new Person());
Person person = persons[0];
List<Dog> dogs = new List<Dog>();
dogs.Add(new Dog());
Dog dog = dogs[0];
·对于值类型的对象还是需要额外的装箱、拆箱。其实对于传统的集合来说,只要其中的包含的内容涉及到值类型,就不可避免需要装箱、拆箱。请看下面的例子。
public class IntCollection : IList
{
...
private ArrayList _Ints = new ArrayList();
public int this[int index]
{ get { return (int)_Ints[index]; } }
public int Add(int item)
{ _Ints.Add(item);
return _Ints.Count - 1;}
public void Remove(int item)
{ _Ints.Remove(item); }
object IList.this[int index]
{ get { return _Ints[index]; }
set { _Ints[index] = (int)value; }}
int IList.Add(object item)
{ return Add((int)item); }
void IList.Remove(object item)
{ Remove((int)item); }
...
}
static void Main(string[] args)
{ IntCollection ints = new IntCollection();
ints.Add(5); //装箱
int i = ints[0]; //拆箱
}
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
SQL Server -- 解决存储过程传入参数作为s
关于JS定时器的整理
JS中使用Promise.all控制所有的异步请求都完
js中字符串的方法
import-local执行流程与node模块路径解析流程
检测数据类型的四种方法
js中数组的方法,32种方法
前端操作方法
数据类型
window.localStorage.setItem 和 localStorage.setIte
如何完美解决前端数字计算精度丢失与数