当前位置:
首页 > Python基础教程 >
-
PythonI/O进阶学习笔记_11.python的多进程
content:
1. 为什么要多进程编程?和多线程有什么区别?
2. python 多进程编程
3. 进程间通信
=======================================
一. 为什么要多进程编程?和多线程有什么区别?
由于GIL的存在,所以对于某一些多线程任务来说,无法利用多核的优势,对这些耗cpu的任务,用多进程反而能利用多cpu。
所以多cpu的操作用多进程编程。
对io操作较多的任务来说,瓶颈不在于cpu,更多的在于io的切换中的消耗和时间等待。用多线程反而能在io挂起的时候,进行线程切换。
虽然io操作多的时候,也可以用多进程编程,但是因为进程的切换系统的代价是十分大的,所以能使用多线程的情况下,尽量用多线程。
所以,对于耗费cpu的操作,比如计算、挖矿等,多进程优于多线程。
例:同计算一组斐波拉契数列的时间比较(耗cpu的操作)
#多线程 from concurrent.futures import ThreadPoolExecutor,as_completed from concurrent.futures import ProcessPoolExecutor import time def fib(n): if n <= 2: return 1 return fib(n-1)+fib(n-2) with ThreadPoolExecutor(3) as excutor: all_task=[excutor.submit(fib,(num)) for num in range(25,35)] start_time=time.time() for future in as_completed(all_task): data=future.result() print("result:{}".format(data)) end_time=time.time() print("last time : {}".format(end_time-start_time)) #output: result:75025 result:121393 result:196418 result:317811 result:514229 result:832040 result:1346269 result:2178309 result:3524578 result:5702887 last time : 98.66604399681091
#多进程 from concurrent.futures import ThreadPoolExecutor,as_completed from concurrent.futures import ProcessPoolExecutor import time def fib(n): if n <= 2: return 1 return fib(n-1)+fib(n-2) if __name__ == "__main__": with ProcessPoolExecutor(3) as excutor: all_task = [excutor.submit(fib, (num)) for num in range(25, 35)] start_time = time.time() for future in as_completed(all_task): data = future.result() print("result:{}".format(data)) end_time = time.time() print("last time : {}".format(end_time - start_time)) #output: result:75025 result:121393 result:196418 result:317811 result:514229 result:832040 result:1346269 result:2178309 result:3524578 result:5702887 last time : 14.470988988876343
进程和线程的区别:
-
进程是资源分配的最小单位,线程是程序执行的最小单位。
-
进程有自己的独立地址空间,每启动一个进程,系统就会为它分配地址空间,建立数据表来维护代码段、堆栈段和数据段,这种操作非常昂贵。而线程是共享进程中的数据的,使用相同的地址空间,因此CPU切换一个线程的花费远比进程要小很多,同时创建一个线程的开销也比进程要小很多。
-
线程之间的通信更方便,同一进程下的线程共享全局变量、静态变量等数据,而进程之间的通信需要以通信的方式(IPC)进行。不过如何处理好同步与互斥是编写多线程程序的难点。
-
但是多进程程序更健壮,多线程程序只要有一个线程死掉,整个进程也死掉了,而一个进程死掉并不会对另外一个进程造成影响,因为进程有自己独立的地址空间。
二、python 多进程编程
1.from concurrent.futures import ProcessPoolExecutor
ProcessPoolExecutor 和上一章 讲到的多线程的用法是一样的。包括其中用到的Futures类。
基本看它的入口函数就明白,这里不再赘述。
2.更加底层的multiprocessing
其实在ProcessPoolExecutor底层用的其实也是multiprocessing。
在multiprocess里,有个Progress类。跟Thread用法又是相似的。
#input from concurrent.futures import ProcessPoolExecutor import multiprocessing #多进程编程 import time def get_html(n): time.sleep(n) print("sub_progress sccess") if __name__
栏目列表
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
SQL SERVER中递归
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
这是目前我见过最好的跨域解决方案!
减少回流与重绘
减少回流与重绘
如何使用KrpanoToolJS在浏览器切图
performance.now() 与 Date.now() 对比
一款纯 JS 实现的轻量化图片编辑器
关于开发 VS Code 插件遇到的 workbench.scm.
前端设计模式——观察者模式
前端设计模式——中介者模式
创建型-原型模式