当前位置:
首页 > Python基础教程 >
-
Python3多线程爬虫实例讲解
多线程概述
多线程使得程序内部可以分出多个线程来做多件事情,充分利用CPU空闲时间,提升处理效率。python提供了两个模块来实现多线程thread 和threading ,thread 有一些缺点,在threading 得到了弥补。并且在Python3中废弃了thread模块,保留了更强大的threading模块。
使用场景
在python的原始解释器CPython中存在着GIL(Global Interpreter Lock,全局解释器锁),因此在解释执行python代码时,会产生互斥锁来限制线程对共享资源的访问,直到解释器遇到I/O操作或者操作次数达到一定数目时才会释放GIL。所以,虽然CPython的线程库直接封装了系统的原生线程,但CPython整体作为一个进程,同一时间只会有一个获得GIL的线程在跑,其他线程则处于等待状态。这就造成了即使在多核CPU中,多线程也只是做着分时切换而已。
如果你的程序是CPU密集型,多个线程的代码很有可能是线性执行的。所以这种情况下多线程是鸡肋,效率可能还不如单线程因为有上下文切换开销。但是如果你的代码是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,多线程可以明显提高效率,例如多线程爬虫,多线程文件处理等等
多线程爬虫
多线程爬虫的代码实例
注: 以下代码在python3下运行通过, python2版本差异较大,不能运行成功,如需帮助请下方留意。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
# coding=utf-8 import threading, queue, time, urllib from urllib import request baseUrl = 'http://www.pythontab.com/html/pythonjichu/' urlQueue = queue.Queue() for i in range ( 2 , 10 ): url = baseUrl + str (i) + '.html' urlQueue.put(url) #print(url) def fetchUrl(urlQueue): while True : try : #不阻塞的读取队列数据 url = urlQueue.get_nowait() i = urlQueue.qsize() except Exception as e: break print ( 'Current Thread Name %s, Url: %s ' % (threading.currentThread().name, url)) try : response = urllib.request.urlopen(url) responseCode = response.getcode() except Exception as e: continue if responseCode = = 200 : #抓取内容的数据处理可以放到这里 #为了突出效果, 设置延时 time.sleep( 1 ) if __name__ = = '__main__' : startTime = time.time() threads = [] # 可以调节线程数, 进而控制抓取速度 threadNum = 4 for i in range ( 0 , threadNum): t = threading.Thread(target = fetchUrl, args = (urlQueue,)) threads.append(t) for t in threads: t.start() for t in threads: #多线程多join的情况下,依次执行各线程的join方法, 这样可以确保主线程最后退出, 且各个线程间没有阻塞 t.join() endTime = time.time() print ( 'Done, Time cost: %s ' % (endTime - startTime)) |
栏目列表
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
SQL SERVER中递归
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
这是目前我见过最好的跨域解决方案!
减少回流与重绘
减少回流与重绘
如何使用KrpanoToolJS在浏览器切图
performance.now() 与 Date.now() 对比
一款纯 JS 实现的轻量化图片编辑器
关于开发 VS Code 插件遇到的 workbench.scm.
前端设计模式——观察者模式
前端设计模式——中介者模式
创建型-原型模式