VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > Python基础教程 >
  • 对pandas进行数据预处理的实例讲解

引入包和加载数据

1
2
3
4
5
import pandas as pd
import numpy as np
train_df =pd.read_csv('../datas/train.csv'# train set
test_df = pd.read_csv('../datas/test.csv'# test set
combine = [train_df, test_df]

 

清洗数据

查看数据维度以及类型

缺失值处理

查看object数据统计信息

数值属性离散化

计算特征与target属性之间关系

 

查看数据维度以及类型

1
2
3
4
5
6
#查看前五条数据
print train_df.head(5
#查看每列数据类型以及nan情况
print train_df.info() 
# 获得所有object属性
print train_data.describe(include=['O']).columns

查看object数据统计信息

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#查看连续数值属性基本统计情况
print train_df.describe() 
#查看object属性数据统计情况
print train_df.describe(include=['O']) 
# 统计Title单列各个元素对应的个数
print train_df['Title'].value_counts() 
# 属性列删除
train_df = train_df.drop(['Name''PassengerId'], axis=1
缺失值处理
# 直接丢弃缺失数据列的行
print df4.dropna(axis=0,subset=['col1']) # 丢弃nan的行,subset指定查看哪几列 
print df4.dropna(axis=1# 丢弃nan的列
# 采用其他值填充
dataset['Cabin'= dataset['Cabin'].fillna('U'
dataset['Title'= dataset['Title'].fillna(0
# 采用出现最频繁的值填充
freq_port = train_df.Embarked.dropna().mode()[0]
dataset['Embarked'= dataset['Embarked'].fillna(freq_port)
# 采用中位数或者平均数填充
test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True)
test_df['Fare'].fillna(test_df['Fare'].dropna().mean(), inplace=True)
数值属性离散化,object属性数值化
# 创造一个新列,FareBand,将连续属性Fare切分成四份
train_df['FareBand'= pd.qcut(train_df['Fare'], 4)
# 查看切分后的属性与target属性Survive的关系
train_df[['FareBand''Survived']].groupby(['FareBand'], as_index=False).mean().sort_values(by='FareBand', ascending=True)
# 建立object属性映射字典 
title_mapping = {"Mr"1"Miss"2"Mrs"3"Master"4"Royalty":5"Officer"6}
dataset['Title'= dataset['Title'].map(title_mapping)
计算特征与target属性之间关系
object与连续target属性之间,可以groupby均值
object与离散target属性之间,先将target数值化,然后groupby均值,或者分别条形统计图
连续属性需要先切割然后再进行groupby计算,或者pearson相关系数
print train_df[['AgeBand''Survived']].groupby(['AgeBand'], as_index=False).mean().sort_values(by='AgeBand', ascending=True)
总结pandas基本操作
”' 
创建df对象 
””' 
s1 = pd.Series([1,2,3,np.nan,4,5]) 
s2 = pd.Series([np.nan,1,2,3,4,5]) 
print s1 
dates = pd.date_range(“20130101”,periods=6
print dates 
df = pd.DataFrame(np.random.rand(6,4),index=dates,columns=list(“ABCD”)) 
# print df 
df2 = pd.DataFrame({“A”:1
‘B':pd.Timestamp(‘20130102'), 
‘C':pd.Series(1,index=list(range(4)),dtype='float32'), 
‘D':np.array([3]*4,dtype=np.int32), 
‘E':pd.Categorical([‘test','train','test','train']), 
‘F':'foo' 
}) 
# print df2.dtypes
df3 = pd.DataFrame({'col1':s1,
     'col2':s2
})
print df3
'''
2.查看df数据
'''
print df3.head(2#查看头几条
print df3.tail(3#查看尾几条
print df.index #查看索引
print df.info() #查看非non数据条数
print type(df.values) #返回二元数组
# print df3.values
print df.describe() #对每列数据进行初步的统计
print df3
print df3.sort_values(by=['col1'],axis=0,ascending=True#按照哪几列排序
'''
3.选择数据
'''
ser_1 = df3['col1']
print type(ser_1) #pandas.core.series.Series
print df3[0:2#前三行
print df3.loc[df3.index[0]] #通过index来访问
print df3.loc[df3.index[0],['col2']] #通过行index,和列名来唯一确定一个位置
print df3.iloc[1#通过位置来访问
print df3.iloc[[1,2],1:2#通过位置来访问
print "==="
print df3.loc[:,['col1','col2']].as_matrix() # 返回nunpy二元数组
print type(df3.loc[:,['col1','col2']].as_matrix())
'''
4.布尔索引,过滤数据
'''
print df3[df3.col1 >2]
df4 = df3.copy()
df4['col3']=pd.Series(['one','two','two','three','one','two'])
print df4
print df4[df4['col3'].isin(['one','two'])]
df4.loc[:,'col3']="five"
print df4
'''
5.缺失值处理,pandas将缺失值用nan代替
'''
print pd.isnull(df4)
print df4.dropna(axis=0,subset=['col1']) # 丢弃nan的行,subset指定查看哪几列
print df4.dropna(axis=1# 丢弃nan的列
 

相关教程