定义三个方法
1.定义一个获取数据的getData()方法
2.定义一个导出excel表的方法exportSqlServer()
3.定义一个获取类型typeof()的方法,用作查询出来的数据被识别
下面直接展示代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
from datetime import datetime import os import pymssql as pymssql import xlwt def getData(): connect = pymssql.connect(host, 'sa' , 密码, 数据库名); cur = connect.cursor(); query = ''' SELECT tableName = D.name , # 我合并单元格是按照这里的表的重复合并的,若用case whern end 结构,则不能合并,会出错 tableIntroduce = isnull(F.value,''), sort = A.colorder, fieldName = A.name, catogary = B.name, bytes = A.Length, lengths = COLUMNPROPERTY(A.id,A.name,'PRECISION'), scales = isnull(COLUMNPROPERTY(A.id,A.name,'Scale'),0), isOrNotNull = Case When A.isnullable=1 Then '√'Else '' End, primarays = Case When exists(SELECT 1 FROM sysobjects Where xtype='PK' and parent_obj=A.id and name in ( SELECT name FROM sysindexes WHERE indid in( SELECT indid FROM sysindexkeys WHERE id = A.id AND colid=A.colid))) then '√' else '' end, defauts = isnull(E.Text,''), annotations = isnull(G.[value],'') FROM syscolumns A Left Join systypes B On A.xusertype=B.xusertype Inner Join sysobjects D On A.id=D.id and D.xtype='U' and D.name<>'dtproperties' Left Join syscomments E on A.cdefault=E.id Left Join sys.extended_properties G on A.id=G.major_id and A.colid=G.minor_id Left Join sys.extended_properties F On D.id=F.major_id and F.minor_id=0 --where d.name='OrderInfo' --如果只查询指定表,加上此条件 Order By A.id,A.colorder''' cur.execute(query) data = cur.fetchall() # 元组类型 return data def exportExcel(name): data = getData() myExcel = xlwt.Workbook( 'encoding=utf-8' ) # 定义表的宽 sheet1 = myExcel.add_sheet(name, cell_overwrite_ok = True ) sheet1.col( 0 ).width = 300 * 20 sheet1.col( 1 ).width = 400 * 20 sheet1.col( 2 ).width = 100 * 20 sheet1.col( 3 ).width = 300 * 20 sheet1.col( 4 ).width = 256 * 20 sheet1.col( 5 ).width = 180 * 20 sheet1.col( 6 ).width = 180 * 20 sheet1.col( 7 ).width = 100 * 20 sheet1.col( 8 ).width = 100 * 20 sheet1.col( 9 ).width = 100 * 20 sheet1.col( 10 ).width = 180 * 20 sheet1.col( 11 ).width = 800 * 20 # 设置居中 a1 = xlwt.Alignment() a1.horz = 0x02 a1.vert = 0x01 style = xlwt.XFStyle() # 赋值style为XFStyle为初始化样式 style.alignment = a1 today = datetime.today() # 获取当前日期,得到一个datetime对象如:(2019, 7, 2, 23, 12, 23, 424000) today_date = datetime.date(today) # 将获取到的datetime对象仅取日期如:2019-7-2 items = [ '数据表' , '表名' , '字段序号' , '字段' , '类型' , '占用字节数' , '长度' , '小数点' , '是否为空' , '是否为主键' , '默认值' , '注释' ] for col in range ( len (items)): sheet1.write( 0 , col, items[col]) # 合并第二列的name,从content获取第一列数据,[("Choleen","xxx"),()] first_col = [] for i in range ( len (data)): first_col.append(data[i][ 0 ]) print ( "first_col:" , first_col) # 去掉重复的列数据,并顺序不变 nFirst_col = list ( set (first_col)) nFirst_col.sort(key = first_col.index) print ( "nFirst_col:" , nFirst_col) row = 1 for i in nFirst_col: count = first_col.count(i) # 计算重复的元素个数 mergeRow = row + count - 1 # 合并后的上行数, sheet1.write_merge(row, mergeRow, 0 , 0 , i, style) # 第一列 sheet1.write_merge(row, mergeRow, 1 , 1 , i, style) row = mergeRow + 1 # 从下一行开始写入 # 获取data[i]中的第二个元素,循环写入 for row in range ( len (data)): for col in range ( 1 , len (data[row])): result = data[row][col] str = typeof(result) # 获取类型 if str = = None : # 不能识别的类型,需要转换 result = result.decode( 'utf-8' ) sheet1.write(row + 1 , col, result, style) fileName = name + '.xls' rootPath = os.path.dirname(os.path.abspath( 'ExportSqlServer.py' )) + '\\' print (rootPath) flag = os.path.exists(rootPath + fileName) if flag: os.remove(rootPath + fileName) myExcel.save(fileName) else : myExcel.save(fileName) def typeof(variate): type = None if isinstance (variate, int ): type = "int" elif isinstance (variate, str ): type = "str" elif isinstance (variate, float ): type = "float" elif isinstance (variate, list ): type = "list" elif isinstance (variate, tuple ): type = "tuple" elif isinstance (variate, dict ): type = "dict" elif isinstance (variate, set ): type = "set" return type if __name__ = = '__main__' : print ( "这是sqlServer导出的数据字典" ); # response = chardet.detect(b'\xe7\x94\xa8\xe6\x88\xb7\xe8\xa1\xa8') # print(response) exportExcel( "user表" ) |
栏目列表
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
SQL SERVER中递归
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
这是目前我见过最好的跨域解决方案!
减少回流与重绘
减少回流与重绘
如何使用KrpanoToolJS在浏览器切图
performance.now() 与 Date.now() 对比
一款纯 JS 实现的轻量化图片编辑器
关于开发 VS Code 插件遇到的 workbench.scm.
前端设计模式——观察者模式
前端设计模式——中介者模式
创建型-原型模式