当前位置:
首页 > Python基础教程 >
-
集成学习之AdaBoost算法(8)
这里是规范化因子:
3) 构建最终分类器为:
对于Adaboost多元分类算法,其实原理和二元分类类似,最主要区别在弱分类器的系数上。比如Adaboost SAMME算法,它的弱分类器的系数:
其中R为类别数。从上式可以看出,如果是二元分类,R=2,则上式和我们的二元分类算法中的弱分类器的系数一致。
7. 总结
到这里Adaboost分类问题差不多结束了,前面有一个没有提到,就是弱学习器的类型。理论上任何学习器都可以用于Adaboost,但一般来说,使用最广泛的Adaboost弱学习器是决策树和神经网络。对于决策树,Adaboost分类用了CART分类树,而Adaboost回归用了CART回归树。
Adaboost的优点有:
1)Adaboost作为分类器时,分类精度很高;
2)在Adaboost的框架下,可以使用各种回归分类模型来构建弱学习器,非常灵活;
3)作为简单的二元分类器时,构造简单,容易实施,结果可理解;
4)不容易发生过拟合。
Adaboost的缺点有:
1)对异常样本敏感,异常样本在迭代中可能会获得较高的权重,影响最终的强学习器的预测准确性。
【补充】:文章开头有提到Adaboost既可以用作分类,也可以用作回归,本文主要针对Adaboost二分类问题做了详细介绍,关于Adaboost回归问题,可以参考https://www.cnblogs.com/pinard/p/6133937.html这篇博客,解释的很详细。