当前位置:
首页 > Python基础教程 >
-
关键词匹配优化(第0篇)—— 问题和思路
工作中遇到一个需求,规范人为输入的特定词汇,大概有100多个词汇。类似下面的情况(关键词比地名复杂一些)
之前是用if else处理的,伪代码如下:
string TempStr;
if(TempStr.Contains("海淀") && TempStr.Contains("北京") )
{
return "北京市海淀区";
}
else if(TempStr.Contains("山东") && TempStr.Contains("威海") )
{
return "山东省威海市";
}
……//等等一共两百多个else,内容也比较复杂,甚至还有正则匹配之类的
else
{
return "匹配失败";
}
因为我的工作是写Excel插件的,这一百多个 else if 太影响运行效率了,而且维护起来也很不方便,增加词汇也困难。
这两天找了一些相关的知识,打算对这部分进行优化,用nlp中的tf-idf方法进行关键词相似度的计算。
整个流程大致是:在数据库中建立关键词映射表,在插件启动时读取为字典,在使用时如果查询不到,就计算相似度并上传到映射表。
栏目列表
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
SQL SERVER中递归
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
这是目前我见过最好的跨域解决方案!
减少回流与重绘
减少回流与重绘
如何使用KrpanoToolJS在浏览器切图
performance.now() 与 Date.now() 对比
一款纯 JS 实现的轻量化图片编辑器
关于开发 VS Code 插件遇到的 workbench.scm.
前端设计模式——观察者模式
前端设计模式——中介者模式
创建型-原型模式