VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > Python基础教程 >
  • 数据结构和算法(Golang实现)(30)查找算法-2-3-4树和普通红黑树(2)

只有符合tree.Root != node && !IsRed(node)才能继续进入递归。

要删除的节点在父亲左边:node == LeftOf(ParentOf(node)),对应图例1,2:

否则对应图例3,4:

可以参考图理解代码,代码注释很清晰地对照了示例图。

2.6. 删除元素算法分析

删除元素比左倾红黑树的情况还要多,但是平均时间复杂度仍然是log(n),出现在和兄弟借不到值的情况下向上递归。和 AVL树 区别是,普通红黑树删除元素最多旋转两次,而 AVL树 可能旋转很多次,甚至自底向上一直旋转到根节点。

2.7. 查找元素等实现

略。与左倾红黑树,AVL树都一样。

2.8. 验证是否是一棵普通红黑树

如何确保我们的代码实现的就是一棵普通红黑树呢,可以进行验证:

// 验证是不是棵红黑树
func (tree *RBTree) IsRBTree() bool {
    if tree == nil || tree.Root == nil {
        return true
    }

    // 判断树是否是一棵二分查找树
    if !tree.Root.IsBST() {
        return false
    }

    // 判断树是否遵循2-3-4树,也就是不能有连续的两个红链接
    if !tree.Root.Is234() {
        return false
    }

    // 判断树是否平衡,也就是任意一个节点到叶子节点,经过的黑色链接数量相同
    // 先计算根节点到最左边叶子节点的黑链接数量
    blackNum := 0
    x := tree.Root
    for x != nil {
        if !IsRed(x) { // 是黑色链接
            blackNum = blackNum + 1
        }
        x = x.Left
    }

    if !tree.Root.IsBalanced(blackNum) {
        return false
    }
    return true
}

// 节点所在的子树是否是一棵二分查找树
func (node *RBTNode) IsBST() bool {
    if node == nil {
        return true
    }

    // 左子树非空,那么根节点必须大于左儿子节点
    if node.Left != nil {
        if node.Value > node.Left.Value {
        } else {
            fmt.Printf("father:%#v,lchild:%#v,rchild:%#v\n", node, node.Left, node.Right)
            return false
        }
    }

    // 右子树非空,那么根节点必须小于右儿子节点
    if node.Right != nil {
        if node.Value < node.Right.Value {
        } else {
            fmt.Printf("father:%#v,lchild:%#v,rchild:%#v\n", node, node.Left, node.Right)
            return false
        }
    }

    // 左子树也要判断是否是平衡查找树
    if !node.Left.IsBST() {
        return false
    }

    // 右子树也要判断是否是平衡查找树
    if !node.Right.IsBST() {
        return false
    }

    return true
}

// 节点所在的子树是否遵循2-3-4树
func (node *RBTNode) Is234() bool {
    if node == nil {
        return true
    }

    // 不允许连续两个左红链接
    if IsRed(node) && IsRed(node.Left) {
        fmt.Printf("father:%#v,lchild:%#v\n", node, node.Left)
        return false
    }

    if IsRed(node) && IsRed(node.Right) {
        fmt.Printf("father:%#v,rchild:%#v\n", node, node.Right)
        return false
    }

    // 左子树也要判断是否遵循2-3-4树
    if !node.Left.Is234() {
        return false
    }

    // 右子树也要判断是否是遵循2-3-4树
    if !node.Right.Is234() {
        return false
    }

    return true
}

// 节点所在的子树是否平衡,是否有 blackNum 个黑链接
func (node *RBTNode) IsBalanced(blackNum int) bool {
    if node == nil {
        return blackNum == 0
    }

    if !IsRed(node) {
        blackNum = blackNum - 1
    }

    if !node.Left.IsBalanced(blackNum) {
        fmt.Println("node.Left to leaf black link is not ", blackNum)
        return false
    }

    if !node.Right.IsBalanced(blackNum) {
        fmt.Println("node.Right to leaf black link is not ", blackNum)
        return false
    }

    return true
}

运行请看完整代码。

2.9. 完整程序

package main

import "fmt"

// 普通红黑树实现,参考 Java TreeMap,更强壮。
// red-black tree

// 定义颜色
const (
    RED   = true
    BLACK = false
)

// 普通红黑树
type RBTree struct {
    Root *RBTNode // 树根节点
}

// 新建一棵空树
func NewRBTree() *RBTree {
    return &RBTree{}
}

// 普通红黑树节点
type RBTNode struct {
    Value  int64    // 值
    Times  int64    // 值出现的次数
    Left   *RBTNode // 左子树
    Right  *RBTNode // 右子树
    Parent *RBTNode // 父节点
    Color  bool     // 父亲指向该节点的链接颜色
}

// 节点的颜色
func IsRed(node *RBTNode) bool {
    if node == nil {
        return false
    }
    return node.Color == RED
}

// 返回节点的父亲节点
func ParentOf(node *RBTNode) *RBTNode {
    if node == nil {
        return nil
    }

    return node.Parent
}

// 返回节点的左子节点
func LeftOf(node *RBTNode) *RBTNode {
    if node == nil {
        return nil
    }

    return node.Left
}

// 返回节点的右子节点
func RightOf(node *RBTNode) *RBTNode {
    if node == nil {
        return nil
    }

    return node.Right
}

// 设置节点颜色
func SetColor(node *RBTNode, color bool) {
    if node != nil {
        node.Color = color
    }
}

// 对某节点左旋转
func (tree *RBTree) RotateLeft(h *RBTNode) {
    if h != nil {

        // 看图理解
        x := h.Right
        h.Right = x.Left

        if x.Left != nil {
            x.Left.Parent = h
        }

        x.Parent = h.Parent
        if h.Parent == nil {
            tree.Root = x
        } else if h.Parent.Left == h {
            h.Parent.Left = x
        } else {
            h.Parent.Right = x
        }
        x.Left = h
        h.Parent = x
    }
}

// 对某节点右旋转
func (tree *RBTree) RotateRight(h *RBTNode) {
    if h != nil {

        // 看图理解
        x := h.Left
        h.Left = x.Right

        if x.Right != nil {
            x.Right.Parent = h
        }

        x.Parent = h.Parent
        if h.Parent == nil {
            tree.Root = x
        } else if h.Parent.Right == h {
            h.Parent.Right = x
        } else {
            h.Parent.Left = x
        }
        x.Right = h
        h.Parent = x
    }
}

// 普通红黑树添加元素
func (tree *RBTree) Add(value int64) {
    // 根节点为空
    if tree.Root == nil {
        // 根节点都是黑色
        tree.Root = &RBTNode{
            Value: value,
            Color: BLACK,
        }
        return
    }

    // 辅助变量 t,表示新元素要插入到该子树,t是该子树的根节点
    t := tree.Root

    // 插入元素后,插入元素的父亲节点
    var parent *RBTNode

    // 辅助变量,为了知道元素最后要插到左边还是右边
    var cmp int64 = 0

    for {
        parent = t

        cmp = value - t.Value
        if cmp < 0 {
            // 比当前节点小,往左子树插入
            t = t.Left
        } else if cmp > 0 {
            // 比当前节点节点大,往右子树插入
            t = t.Right
        } else {
            // 已经存在值了,更新出现的次数
            t.Times = t.Times + 1
            return
        }

        // 终于找到要插入的位置了
        if t == nil {
            break // 这时叶子节点是 parent,要插入到 parent 的下面,跳到外层去
        }
    }

    // 新节点,它要插入到 parent下面
    newNode := &RBTNode{
        Value:  value,
        Parent: parent,
    }
    if cmp < 0 {
        // 知道要从左边插进去
        parent.Left = newNode
    } else {
        // 知道要从右边插进去
        parent.Right = newNode
    }

    // 插入新节点后,可能破坏了红黑树特征,需要修复,核心函数
    tree.fixAfterInsertion(newNode)
}

// 调整新插入的节点,自底而上
// 可以看图理解
func (tree *RBTree) fixAfterInsertion(node *RBTNode) {
    // 插入的新节点一定要是红色
    node.Color = RED

    // 节点不能是空,不能是根节点,父亲的颜色必须为红色(如果是黑色,那么直接插入不破坏平衡,不需要调整了)
    for node != nil && node != tree.Root && node.Parent.Color == RED {
        // 父亲在祖父的左边
        if ParentOf(node) == LeftOf(ParentOf(ParentOf(node))) {
            // 叔叔节点
            uncle := RightOf(ParentOf(ParentOf(node)))

            // 图例3左边部分,叔叔是红节点,祖父变色,也就是父亲和叔叔变黑,祖父变红
            if IsRed(uncle) {
                SetColor(ParentOf(node), BLACK)
                SetColor(uncle, BLACK)
                SetColor(ParentOf(ParentOf(node)), RED)
                // 还要向上递归
                node = ParentOf(ParentOf(node))
            } else {
                // 图例4左边部分,叔叔是黑节点,并且插入的节点在父亲的右边,需要对父亲左旋
                if node == RightOf(ParentOf(node)) {
                    node = ParentOf(node)
                    tree.RotateLeft(node)
                }

                // 变色,并对祖父进行右旋
                SetColor(ParentOf(node), BLACK)
                SetColor(ParentOf(ParentOf(node)), RED)
                tree.RotateRight(ParentOf(ParentOf(node)))
            }
        } else {
            // 父亲在祖父的右边,与父亲在祖父的左边相似
            // 叔叔节点
            uncle := LeftOf(ParentOf(ParentOf(node)))

            // 图例3右边部分,叔叔是红节点,祖父变色,也就是父亲和叔叔变黑,祖父变红
            if IsRed(uncle) {
                SetColor(ParentOf(node), BLACK)
                SetColor(uncle, BLACK)
                SetColor(ParentOf(ParentOf(node)), RED)
                // 还要向上递归
                node = ParentOf(ParentOf(node))
            } else {
                // 图例4右边部分,叔叔是黑节点,并且插入的节点在父亲的左边,需要对父亲右旋
                if node == LeftOf(ParentOf(node)) {
                    node = ParentOf(node)
                    tree.RotateLeft(node)
                }

                // 变色,并对祖父进行左旋
                SetColor(ParentOf(node), BLACK)
                SetColor(ParentOf(ParentOf(node)), RED)
                tree.RotateLeft(ParentOf(ParentOf(node)))
            }
        }
    }

    // 根节点永远为黑
    tree.Root.Color = BLACK
}

// 普通红黑树删除元素
func (tree *RBTree) Delete(value int64) {
    // 查找元素是否存在,不存在则退出
    p := tree.Find(value)
    if p == nil {
        return
    }

    // 删除该节点
    tree.delete(p)
}

// 删除节点核心函数
// 找最小后驱节点来补位,删除内部节点转为删除叶子节点
func (tree *RBTree) delete(node *RBTNode) {
    // 如果左右子树都存在,那么从右子树的左边一直找一直找,就找能到最小后驱节点
    if node.Left != nil && node.Right != nil {
        s := node.Right
        for s.Left != nil {
            s = s.Left
        }

        // 删除的叶子节点找到了,删除内部节点转为删除叶子节点
        node.Value = s.Value
        node.Times = s.Times
        node = s
    } else if node.Left == nil && node.Right == nil {
        // 没有子树,要删除的节点就是叶子节点。
    } else {
        // 只有一棵子树,因为红黑树的特征,该子树就只有一个节点
        // 找到该唯一节点
        replacement := node.Left
        if node.Left == nil {
            replacement = node.Right
        }

        // 替换开始,子树的唯一节点替代被删除的内部节点
        replacement.Parent = node.Parent
        if node.Parent == nil {
            // 要删除的节点的父亲为空,表示要删除的节点为根节点,唯一子节点成为树根
            tree.Root = replacement
            // 根节点永远都是黑色
            tree.Root.Color = BLACK
        } else if node == node.Parent.Left {
            // 子树的唯一节点替代被删除的内部节点
            node.Parent.Left = replacement
        } else {
            // 子树的唯一节点替代被删除的内部节点
            node.Parent.Right = replacement
        }

        // 子树的该唯一节点一定是一个红节点,不然破坏红黑树特征,所以替换后可以直接返回
        return
    }

    // 要删除的叶子节点没有父亲,那么它是根节点,直接置空,返回
    if node.Parent == nil {
        tree.Root = nil
        return
    }

    // 要删除的叶子节点,是一个黑节点,删除后会破坏平衡,需要进行调整,调整成可以删除的状态
    if !IsRed(node) {
        // 核心函数
        tree.fixAfterDeletion(node)
    }

    // 现在可以删除叶子节点了
    if node == node.Parent.Left {
        node.Parent.Left = nil
    } else if node == node.Parent.Right {
        node.Parent.Right = nil
    }

}

// 调整删除的叶子节点,自底向上
// 可以看图理解
func (tree *RBTree) fixAfterDeletion(node *RBTNode) {
    // 如果不是递归到根节点,且节点是黑节点,那么继续递归
    for tree.Root != node && !IsRed(node) {
        // 要删除的节点在父亲左边,对应图例1,2
        if node == LeftOf(ParentOf(node)) {
            // 找出兄弟
            brother := RightOf(ParentOf(node))

            // 兄弟是红色的,对应图例1,那么兄弟变黑,父亲变红,然后对父亲左旋,进入图例23
            if IsRed(brother) {
                SetColor(brother, BLACK)
                SetColor(ParentOf(node), RED)
                tree.RotateLeft(ParentOf(node))
                brother = RightOf(ParentOf(node)) // 图例1调整后进入图例23,兄弟此时变了
            }

            // 兄弟是黑色的,对应图例21,22,23
            // 兄弟的左右儿子都是黑色,进入图例23,将兄弟设为红色,父亲所在的子树作为整体,当作删除的节点,继续向上递归
            if !IsRed(LeftOf(brother)) && !IsRed(RightOf(brother)) {
                SetColor(brother, RED)
                node = ParentOf(node)
            } else {
                // 兄弟的右儿子是黑色,进入图例22,将兄弟设为红色,兄弟的左儿子设为黑色,对兄弟右旋,进入图例21
                if !IsRed(RightOf(brother)) {
                    SetColor(LeftOf(brother), BLACK)
                    SetColor(brother, RED)
                    tree.RotateRight(brother)
                    brother = RightOf(ParentOf(node)) // 图例22调整后进入图例21,兄弟此时变了
                }

                // 兄弟的右儿子是红色,进入图例21,将兄弟设置为父亲的颜色,兄弟的右儿子以及父亲变黑,对父亲左旋
                SetColor(brother, IsRed(ParentOf(node)))
                SetColor(ParentOf(node), BLACK)
                SetColor(RightOf(brother), BLACK)
                tree.RotateLeft(ParentOf(node))

                // 可以返回删除叶子节点了
                return
            }
        } else {
            // 要删除的节点在父亲右边,对应图例3,4
            // 找出兄弟
            brother := RightOf(ParentOf(node))

            // 兄弟是红色的,对应图例3,那么兄弟变黑,父亲变红,然后对父亲右旋,进入图例43
            if IsRed(brother) {
                SetColor(brother, BLACK)
                SetColor(ParentOf(node), RED)
                tree.RotateRight(ParentOf(node))
                brother = LeftOf(ParentOf(node)) // 图例3调整后进入图例43,兄弟此时变了
            }

            // 兄弟是黑色的,对应图例41,42,43
            // 兄弟的左右儿子都是黑色,进入图例43,将兄弟设为红色,父亲所在的子树作为整体,当作删除的节点,继续向上递归
            if !IsRed(LeftOf(brother)) && !IsRed(RightOf(brother)) {
                SetColor(brother, RED)
                node = ParentOf(node)
            } else {
                // 兄弟的左儿子是黑色,进入图例42,将兄弟设为红色,兄弟的右儿子设为黑色,对兄弟左旋,进入图例41
                if !IsRed(LeftOf(brother)) {
                    SetColor(RightOf(brother), BLACK)
                    SetColor(brother, RED)
                    tree.RotateLeft(brother)
                    brother = LeftOf(ParentOf(node)) // 图例42调整后进入图例41,兄弟此时变了
                }

                // 兄弟的左儿子是红色,进入图例41,将兄弟设置为父亲的颜色,兄弟的左儿子以及父亲变黑,对父亲右旋
                SetColor(brother, IsRed(ParentOf(node)))
                SetColor(ParentOf(node), BLACK)
                SetColor(LeftOf(brother), BLACK)
                tree.RotateRight(ParentOf(node))

                // 可以返回删除叶子节点了
                return
            }
        }
    }

    // 树根节点永远为黑
    tree.Root.Color = BLACK
}

// 找出最小值的节点
func (tree *RBTree) FindMinValue() *RBTNode {
    if tree.Root == nil {
        // 如果是空树,返回空
        return nil
    }

    return tree.Root.FindMinValue()
}

func (node *RBTNode) FindMinValue() *RBTNode {
    // 左子树为空,表面已经是最左的节点了,该值就是最小值
    if node.Left == nil {
        return node
    }

    // 一直左子树递归
    return node.Left.FindMinValue()
}

// 找出最大值的节点
func (tree *RBTree) FindMaxValue() *RBTNode {
    if tree.Root == nil {
        // 如果是空树,返回空
        return nil
    }

    return tree.Root.FindMaxValue()
}

func (node *RBTNode) FindMaxValue() *RBTNode {
    // 右子树为空,表面已经是最右的节点了,该值就是最大值
    if node.Right == nil {
        return node
    }

    // 一直右子树递归
    return node.Right.FindMaxValue()
}

// 查找指定节点
func (tree *RBTree) Find(value int64) *RBTNode {
    if tree.Root == nil {
        // 如果是空树,返回空
        return nil
    }

    return tree.Root.Find(value)
}

func (node *RBTNode) Find(value int64) *RBTNode {
    if value == node.Value {
        // 如果该节点刚刚等于该值,那么返回该节点
        return node
    } else if value < node.Value {
        // 如果查找的值小于节点值,从节点的左子树开始找
        if node.Left == nil {
            // 左子树为空,表示找不到该值了,返回nil
            return nil
        }
        return node.Left.Find(value)
    } else {
        // 如果查找的值大于节点值,从节点的右子树开始找
        if node.Right == nil {
            // 右子树为空,表示找不到该值了,返回nil
            return nil
        }
        return node.Right.Find(value)
    }
}

// 中序遍历
func (tree *RBTree) MidOrder() {
    tree.Root.MidOrder()
}

func (node *RBTNode) MidOrder() {
    if node == nil {
        return
    }

    // 先打印左子树
    node.Left.MidOrder()

    // 按照次数打印根节点
    for i := 0; i <= int(node.Times); i++ {
        fmt.Println(node.Value)
    }

    // 打印右子树
    node.Right.MidOrder()
}

// 验证是不是棵红黑树
func (tree *RBTree) IsRBTree() bool {
    if tree == nil || tree.Root == nil {
        return true
    }

    // 判断树是否是一棵二分查找树
    if !tree.Root.IsBST() {
        return false
    }

    // 判断树是否遵循2-3-4树,也就是不能有连续的两个红链接
    if !tree.Root.Is234() {
        return false
    }

    // 判断树是否平衡,也就是任意一个节点到叶子节点,经过的黑色链接数量相同
    // 先计算根节点到最左边叶子节点的黑链接数量
    blackNum := 0
    x := tree.Root
    for x != nil {
        if !IsRed(x) { // 是黑色链接
            blackNum = blackNum + 1
        }
        x = x.Left
    }

    if !tree.Root.IsBalanced(blackNum) {
        return false
    }
    return true
}

// 节点所在的子树是否是一棵二分查找树
func (node *RBTNode) IsBST() bool {
    if node == nil {
        return true
    }

    // 左子树非空,那么根节点必须大于左儿子节点
    if node.Left != nil {
        if node.Value > node.Left.Value {
        } else {
            fmt.Printf("father:%#v,lchild:%#v,rchild:%#v\n", node, node.Left, node.Right)
            return false
        }
    }

    // 右子树非空,那么根节点必须小于右儿子节点
    if node.Right != nil {
        if node.Value < node.Right.Value {
        } else {
            fmt.Printf("father:%#v,lchild:%#v,rchild:%#v\n", node, node.Left, node.Right)
            return false
        }
    }

    // 左子树也要判断是否是平衡查找树
    if !node.Left.IsBST() {
        return false
    }

    // 右子树也要判断是否是平衡查找树
    if !node.Right.IsBST() {
        return false
    }

    return true
}

// 节点所在的子树是否遵循2-3-4树
func (node *RBTNode) Is234() bool {
    if node == nil {
        return true
    }

    // 不允许连续两个左红链接
    if IsRed(node) && IsRed(node.Left) {
        fmt.Printf("father:%#v,lchild:%#v\n", node, node.Left)
        return false
    }

    if IsRed(node) && IsRed(node.Right) {
        fmt.Printf("father:%#v,rchild:%#v\n", node, node.Right)
        return false
    }

    // 左子树也要判断是否遵循2-3-4树
    if !node.Left.Is234() {
        return false
    }

    // 右子树也要判断是否是遵循2-3-4树
    if !node.Right.Is234() {
        return false
    }

    return true
}

// 节点所在的子树是否平衡,是否有 blackNum 个黑链接
func (node *RBTNode) IsBalanced(blackNum int) bool {
    if node == nil {
        return blackNum == 0
    }

    if !IsRed(node) {
        blackNum = blackNum - 1
    }

    if !node.Left.IsBalanced(blackNum) {
        fmt.Println("node.Left to leaf black link is not ", blackNum)
        return false
    }

    if !node.Right.IsBalanced(blackNum) {
        fmt.Println("node.Right to leaf black link is not ", blackNum)
        return false
    }

    return true
}

func main() {
    tree := NewRBTree()
    values := []int64{2, 3, 7, 10, 10, 10, 10, 23, 9, 102, 109, 111, 112, 113}
    for _, v := range values {
        tree.Add(v)
    }

    // 找到最大值或最小值的节点
    fmt.Println("find min value:", tree.FindMinValue())
    fmt.Println("find max value:", tree.FindMaxValue())

    // 查找不存在的99
    node := tree.Find(99)
    if node != nil {
        fmt.Println("find it 99!")
    } else {
        fmt.Println("not find it 99!")
    }

    // 查找存在的9
    node = tree.Find(9)
    if node != nil {
        fmt.Println("find it 9!")
    } else {
        fmt.Println("not find it 9!")
    }

    tree.MidOrder()

    // 删除存在的9后,再查找9
    tree.Delete(9)
    tree.Delete(10)
    tree.Delete(2)
    tree.Delete(3)
    tree.Add(4)
    tree.Add(3)
    tree.Add(10)
    tree.Delete(111)
    node = tree.Find(9)
    if node != nil {
        fmt.Println("find it 9!")
    } else {
        fmt.Println("not find it 9!")
    }

    if tree.IsRBTree() {
        fmt.Println("is a rb tree")
    } else {
        fmt.Println("is not rb tree")
    }

    tree.Delete(3)
    tree.Delete(4)
    tree.Delete(7)
    tree.Delete(10)
    tree.Delete(23)
    tree.Delete(102)
    tree.Delete(109)
    tree.Delete(112)
    tree.Delete(112)
    tree.MidOrder()
}

运行:

find min value: &{2 0 <nil> <nil> 0xc000092060 false}
find max value: &{113 0 <nil> <nil> 0xc0000921e0 true}
not find it 99!
find it 9!
2
3
7
9
10
10
10
10
23
102
109
111
112
113
not find it 9!
is a rb tree

红黑树,无论是左偏还是普通的红黑树,理解都可以直接理解2-3或2-3-4树,添加操作比较简单,删除则是向兄弟借值或和父亲合并,然后如果父亲空了,把父亲的子树当成删除的一个整体,继续递归向上,至于二叉化的调整实现,则是将3或4节点画成红链接,可以多画下图就理解了。

三、应用场景

红黑树可以用来作为字典Map的基础数据结构,可以存储键值对,然后通过一个键,可以快速找到键对应的值,相比哈希表查找,不需要占用额外的空间。我们以上的代码实现只有value,没有key:value,可以简单改造实现字典。

Java语言基础类库中的HashMapTreeSetTreeMap都有使用到,C++语言的STL标准模板库中,mapset类也有使用到。很多中间件也有使用到,比如Nginx,但Golang语言标准库并没有它。


相关教程