当前位置:
首页 > Python基础教程 >
-
Python数据分析实例
Python数据分析
Python爬取网页数据
// An highlighted block
import requests
if __name__=="__main__":
response = requests.get("https://book.douban.com/subject/26986954/")
content = response.content.decode("utf-8")
print(content)
// An highlighted block
import requests
url="https://pro.jd.com/mall/active/4BNKTNkRMHJ48QQ5LrUf6AsydtZ6/index.html"
try:
r=requests.get(url)
r.raise_for_status()
r.encoding=r.apparent_encoding
print(r.text[:100])
except:
print("爬取失败")
Python生成柱状图
// An highlighted block
import matplotlib.pyplot as plt
num_list = [1.5,0.6,7.8,6]
plt.bar(range(len(num_list)), num_list,color='rbgy')
plt.show()
Python生成堆状柱状图
// An highlighted block
import matplotlib.pyplot as plt
name_list = ['Monday','Tuesday','Friday','Sunday']
num_list = [1.5,0.6,7.8,6]
num_list1 = [1,2,3,1]
plt.bar(range(len(num_list)), num_list, label='boy',fc = 'y')
plt.bar(range(len(num_list)), num_list1, bottom=num_list, label='girl',tick_label = name_list,fc = 'r')
plt.legend()
plt.show()
Python生成竖状柱状图
// An highlighted block
import matplotlib.pyplot as plt
name_list = ['Monday','Tuesday','Friday','Sunday']
num_list = [1.5,0.6,7.8,6]
num_list1 = [1,2,3,1]
x =list(range(len(num_list)))
total_width, n = 0.8, 2
width = total_width / n
plt.bar(x, num_list, width=width, label='boy',fc = 'y')
for i in range(len(x)):
x[i] = x[i] + width
plt.bar(x, num_list1, width=width, label='girl',tick_label = name_list,fc = 'r')
plt.legend()
plt.show()
Python生成折线图
// An highlighted block
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(15, 4), columns=['a', 'b', 'c', 'd'])
df.plot.area()
Python生成柱状图
// An highlighted block
import pandas as pd
import numpy as np
df = pd.DataFrame(3 * np.random.rand(5), index=['a', 'b', 'c', 'd','e'], columns=['x'])
df.plot.pie(subplots=True)
Python生成箱型图
// An highlighted block
#首先导入基本的绘图包
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
#添加成绩表
plt.style.use("ggplot")
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['font.sans-serif']=['SimHei']
#新建一个空的DataFrame
df=pd.DataFrame()
// An highlighted block
df["英语"]=[76,90,97,71,70,93,86,83,78,85,81]
df["经济数学"]=[65,95,51,74,78,63,91,82,75,71,55]
df["西方经济学"]=[93,81,76,88,66,79,83,92,78,86,78]
df["计算机应用基础"]=[85,78,81,95,70,67,82,72,80,81,77]
df
// An highlighted block
plt.boxplot(x=df.values,labels=df.columns,whis=1.5)
plt.show()
// An highlighted block
#用pandas自带的画图工具更快
df.boxplot()
plt.show()
Python生成正态分布图
// An highlighted block
# -*- coding:utf-8 -*-
# Python实现正态分布
# 绘制正态分布概率密度函数
import numpy as np
import matplotlib.pyplot as plt
import math
u = 0 # 均值μ
u01 = -2
sig = math.sqrt(0.2) # 标准差δ
x = np.linspace(u - 3 * sig, u + 3 * sig, 50)
y_sig = np.exp(-(x - u) ** 2 / (2 * sig ** 2)) / (math.sqrt(2 * math.pi) * sig)
print(x)
print("=" * 20)
print(y_sig)
plt.plot(x, y_sig, "r-", linewidth=2)
plt.grid(True)
plt.show()
喜欢的小伙伴可以尝试一下哦
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/m0_37876935/article/details/92013272
栏目列表
最新更新
python爬虫及其可视化
使用python爬取豆瓣电影短评评论内容
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
SQL SERVER中递归
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
uniapp/H5 获取手机桌面壁纸 (静态壁纸)
[前端] DNS解析与优化
为什么在js中需要添加addEventListener()?
JS模块化系统
js通过Object.defineProperty() 定义和控制对象
这是目前我见过最好的跨域解决方案!
减少回流与重绘
减少回流与重绘
如何使用KrpanoToolJS在浏览器切图
performance.now() 与 Date.now() 对比