VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > Python基础教程 >
  • pytorch实现最小推荐系统(代码示例)

首先,我们需要导入所需的库:

import torch
import torch.nn as nn
import torch.optim as optim

然后,我们定义一个类来实现最小的推荐算法:

class RecommendationModel(nn.Module):
    def __init__(self, num_users, num_items, embedding_dim):
        super(RecommendationModel, self).__init__()
        self.user_embedding = nn.Embedding(num_users, embedding_dim)
        self.item_embedding = nn.Embedding(num_items, embedding_dim)
        self.fc = nn.Linear(embedding_dim, 1)
        
    def forward(self, users, items):
        user_embedded = self.user_embedding(users)
        item_embedded = self.item_embedding(items)
        prediction = self.fc(torch.mul(user_embedded, item_embedded)).squeeze()
        return prediction

在上述代码中,我们定义了一个继承自nn.Module的类RecommendationModel。在初始化函数中,我们定义了两个嵌入层(Embedding)以及一个全连接层(Linear)。forward函数实现了模型的前向传播过程,其中计算预测值的方法是对用户和物品的嵌入向量进行元素级别的乘法操作,并通过全连接层得到最终的预测值。

接下来,我们可以定义训练函数:

def train_model(model, train_data, num_epochs, learning_rate):
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    criterion = nn.MSELoss()
    
    for epoch in range(num_epochs):
        total_loss = 0
        
        for users, items, ratings in train_data:
            optimizer.zero_grad()
            predictions = model(users, items)
            loss = criterion(predictions, ratings)
            loss.backward()
            optimizer.step()
            
            total_loss += loss.item()
            
        print("Epoch {}/{} Loss: {:.4f}".format(epoch+1, num_epochs, total_loss))

在上述代码中,我们使用Adam优化器和均方误差损失函数(MSELoss)来进行模型的训练。对于每个epoch,我们计算总的损失,并在每个iteration中进行反向传播和参数更新。

最后,我们可以使用上述定义的函数来训练模型:

# 假设有100个用户和200个物品,嵌入维度为10
num_users = 100
num_items = 200
embedding_dim = 10

# 生成随机训练数据
train_data = [(torch.randint(num_users, (1,)), torch.randint(num_items, (1,)), torch.rand(1)) for _ in range(1000)]

# 创建模型实例
model = RecommendationModel(num_users, num_items, embedding_dim)

# 训练模型
num_epochs = 10
learning_rate = 0.001
train_model(model, train_data, num_epochs, learning_rate)

在上述代码中,我们通过torch.randint函数生成1000个随机的用户、物品和评分数据作为训练数据。然后,我们创建了一个模型实例,并使用train_model函数对模型进行训练。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

原文链接:https://blog.csdn.net/lalala8866/article/details/138544730


相关教程