VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > Python基础教程 >
  • pandas中iloc函数的具体实现

iloc是Pandas中用于基于整数位置进行索引和切片的方法,本文主要介绍了pandas中iloc函数的具体实现,具有一定的参考价值,感兴趣的可以了解一下

iloc 是 Pandas 中用于基于整数位置进行索引和切片的方法。它允许你通过整数位置来访问 DataFrame 中的特定行和列。

语法格式如下:

DataFrame.iloc[row_indexer, column_indexer]
row_indexer: 行的整数位置或切片。
column_indexer: 列的整数位置或切片。
下面是一些使用 iloc 的示例:

import pandas as pd
 
# 创建一个示例 DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],
        'Age': [25, 30, 35, 40],
        'City': ['New York', 'San Francisco', 'Los Angeles', 'Chicago']}
 
df = pd.DataFrame(data)
 
# 使用 iloc 获取特定行和列的数据
# 获取第二行(索引为1)的所有列数据
row_1 = df.iloc[1, :]
 
# 获取第一列(索引为0)的所有行数据
column_0 = df.iloc[:, 0]
 
# 获取第二行到第四行(索引为1到3)的第一列和第二列的数据
subset = df.iloc[1:4, 0:2]
 
print("Row 1:")
print(row_1)
print("\nColumn 0:")
print(column_0)
print("\nSubset:")
print(subset)

在这个例子中,iloc 被用于获取指定的行和列。要注意,iloc 使用的是整数位置,而不是标签。索引从0开始。这使得 iloc 适用于对 DataFrame 进行基于位置的切片和索引。

Row 1:
Name              Bob
Age                30
City    San Francisco
Name: 1, dtype: object
 
Column 0:
0      Alice
1        Bob
2    Charlie
3      David
Name: Name, dtype: object
 
Subset:
      Name  Age
1      Bob   30
2  Charlie   35
3    David   40

到此这篇关于pandas中iloc函数的具体实现的文章就介绍到这了,更多相关pandas iloc函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持

原文链接:https://blog.csdn.net/weixin_47552564/article/details/135567755


相关教程