当前位置:
首页 > Python基础教程 >
-
Python产生batch数据的操作
这篇文章主要介绍了Python产生batch数据的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
产生batch数据
输入data中每个样本可以有多个特征,和一个标签,最好都是numpy.array格式。
datas = [data1, data2, …, dataN ], labels = [label1, label2, …, labelN],
其中data[i] = [feature1, feature2,…featureM], 表示每个样本数据有M个特征。
输入我们方法的数据,all_data = [datas, labels] 。
代码实现
通过索引值来产生batch大小的数据,同时提供是否打乱顺序的选择,根据随机产生数据量范围类的索引值来打乱顺序。
import numpy as np
def batch_generator(all_data , batch_size, shuffle=True):
"""
:param all_data : all_data整个数据集,包含输入和输出标签
:param batch_size: batch_size表示每个batch的大小
:param shuffle: 是否打乱顺序
:return:
"""
# 输入all_datas的每一项必须是numpy数组,保证后面能按p所示取值
all_data = [np.array(d) for d in all_data]
# 获取样本大小
data_size = all_data[0].shape[0]
print("data_size: ", data_size)
if shuffle:
# 随机生成打乱的索引
p = np.random.permutation(data_size)
# 重新组织数据
all_data = [d[p] for d in all_data]
batch_count = 0
while True:
# 数据一轮循环(epoch)完成,打乱一次顺序
if batch_count * batch_size + batch_size > data_size:
batch_count = 0
if shuffle:
p = np.random.permutation(data_size)
all_data = [d[p] for d in all_data]
start = batch_count * batch_size
end = start + batch_size
batch_count += 1
yield [d[start: end] for d in all_data]
测试数据
样本数据x和标签y可以分开输入,也可以同时输入。
# 输入x表示有23个样本,每个样本有两个特征
# 输出y表示有23个标签,每个标签取值为0或1
x = np.random.random(size=[23, 2])
y = np.random.randint(2, size=[23,1])
count = x.shape[0]
batch_size = 5
epochs = 20
batch_num = count // batch_size
batch_gen = batch_generator([x, y], batch_size)
for i in range(epochs):
print("##### epoch %s ##### " % i)
for j in range(batch_num):
batch_x, batch_y = next(batch_gen)
print("-----epoch=%s, batch=%s-----" % (i, j))
print(batch_x, batch_y)
补充:使用tensorflow.data.Dataset构造batch数据集
import tensorflow as tf
import numpy as np
def _parse_function(x):
num_list = np.arange(10)
return num_list
def _from_tensor_slice(x):
return tf.data.Dataset.from_tensor_slices(x)
softmax_data = tf.data.Dataset.range(1000) # 构造一个队列
softmax_data = softmax_data.map(lambda x:tf.py_func(_parse_function, [x], [tf.int32]))# 将数据进行传入
softmax_data = softmax_data.flat_map(_from_tensor_slice) #将数据进行平铺, 将其变为一维的数据,from_tensor_slice将数据可以输出
softmax_data = softmax_data.batch(1) #构造一个batch的数量
softmax_iter = softmax_data.make_initializable_iterator() # 构造数据迭代器
softmax_element = softmax_iter.get_next() # 获得一个batch的数据
sess = tf.Session()
sess.run(softmax_iter.initializer) # 数据迭代器的初始化操作
print(sess.run(softmax_element)) # 实际获得一个数据
print(sess.run(softmax_data))
以上为个人经验,希望能给大家一个参考,也希望大家多多支持
如有错误或未考虑完全的地方,望不吝赐教。
原文链接:https://blog.csdn.net/huanghaocs/article/details/83242353
栏目列表
最新更新
vbscript基础篇 - vbs数组Array的定义与使用方
vbscript基础篇 - vbs变量定义与使用方法
vbs能调用的系统对象小结
vbscript网页模拟登录效果代码
VBScript 根据IE窗口的标题输出ESC
杀死指定进程名称的小VBS
通过vbs修改以点结尾的文件的属性为隐藏
查询电脑开关机时间的vbs代码
VBA中的Timer函数用法
ComboBox 控件的用法教程
SQL SERVER中递归
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
uniapp/H5 获取手机桌面壁纸 (静态壁纸)
[前端] DNS解析与优化
为什么在js中需要添加addEventListener()?
JS模块化系统
js通过Object.defineProperty() 定义和控制对象
这是目前我见过最好的跨域解决方案!
减少回流与重绘
减少回流与重绘
如何使用KrpanoToolJS在浏览器切图
performance.now() 与 Date.now() 对比