当前位置:
首页 > Python基础教程 >
-
python 查找轮廓的实现示例
边缘检测是一种从图像中提取轮廓和特征的技术,本文主要介绍了python查找轮廓的实现示例,具有一定的参考价值,感兴趣的可以了解一下
在Python中,查找图像的轮廓通常使用OpenCV库。以下是一个简单的示例代码,展示了如何使用OpenCV来查找并绘制图像的轮廓:
import cv2
import numpy as np
# 读取图像
image = cv2.imread('your_image.jpg', 0) # 请将'your_image.jpg'替换为您的图像文件名,0表示以灰度模式读取
# 二值化图像
_, thresh = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
# 查找轮廓
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
result = np.zeros_like(image)
cv2.drawContours(result, contours, -1, (255), 2)
# 显示结果
cv2.imshow('Contours', result)
cv2.waitKey(0)
cv2.destroyAllWindows()</code>
这段代码首先导入了OpenCV库(通常简称为cv2)和NumPy库(用于数值计算)。然后,它读取了一张图像(在这里,您需要将其替换为您自己的图像文件名),并将其转换为灰度模式。接下来,使用阈值函数将图像二值化,以便更容易地找到轮廓。
cv2.findContours函数用于查找二值化图像中的轮廓。它返回两个值:一个是轮廓列表,另一个是轮廓的层次结构信息(在这个例子中我们不需要它,所以使用_来忽略它)。
然后,我们创建一个与原始图像大小相同的黑色图像,并使用cv2.drawContours函数将找到的轮廓绘制到该图像上。最后,我们使用cv2.imshow函数显示结果图像,并使用cv2.waitKey和cv2.destroyAllWindows函数等待用户关闭窗口并清理资源。
请注意,这只是一个简单的示例,用于演示如何使用OpenCV查找和绘制图像的轮廓。在实际应用中,您可能需要根据具体需求对代码进行调整和优化。
到此这篇关于python 查找轮廓的实现示例的文章就介绍到这了,更多相关python 查找轮廓内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持
原文链接:https://blog.csdn.net/weixin_46807151/article/details/140086470
栏目列表
最新更新
vbscript基础篇 - vbs数组Array的定义与使用方
vbscript基础篇 - vbs变量定义与使用方法
vbs能调用的系统对象小结
vbscript网页模拟登录效果代码
VBScript 根据IE窗口的标题输出ESC
杀死指定进程名称的小VBS
通过vbs修改以点结尾的文件的属性为隐藏
查询电脑开关机时间的vbs代码
VBA中的Timer函数用法
ComboBox 控件的用法教程
SQL SERVER中递归
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
uniapp/H5 获取手机桌面壁纸 (静态壁纸)
[前端] DNS解析与优化
为什么在js中需要添加addEventListener()?
JS模块化系统
js通过Object.defineProperty() 定义和控制对象
这是目前我见过最好的跨域解决方案!
减少回流与重绘
减少回流与重绘
如何使用KrpanoToolJS在浏览器切图
performance.now() 与 Date.now() 对比