当前位置:
首页 > temp > 简明python教程 >
-
【2020Python修炼记】python并发编程(三)多进程-应用部分
一、 multiprocessing模块介绍
# python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程。
# Python提供了multiprocessing 模块——
# 作用:multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似
# 功能:multiprocessing模块的功能众多:支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
PS:需要再次强调的一点是:与线程不同,进程没有任何共享状态,进程修改的数据,改动仅限于该进程内。
二、 process类的介绍
1、创建进程的 类 process
Process([group [, target [, name [, args [, kwargs]]]]]),
由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)
强调:
1、需要使用关键字的方式来指定参数 eg: Process(target=task, args=('jason',))
2、group 参数未使用,值始终为None
3、target 表示调用对象,即子进程要执行的任务
4、args 表示调用对象target函数的位置参数元组,args=(1,2,'egon',) ,(元组形式,用逗号隔开元素,末尾一定必须有逗号)
5、kwargs 表示调用对象的字典,kwargs={'name':'egon','age':18}
6、name 为子进程的名称
2、方法介绍
1、p.start()
启动进程,并调用该子进程中的p.run()
2、p.run()
进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法
3、p.terminate()
强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。
如果p还保存了一个锁那么也将不会被释放,进而导致死锁
4、p.is_alive()
如果p仍然运行,返回True
5、p.join([timeout])
主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。
timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程
3、属性介绍
1、p.daemon
默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,
并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
2、p.name 进程的名称
3、p.pid 当前进程的pid
4、p.ppid 当前进程的父进程的pid
5、p.exitcode
进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
6、p.authkey
进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。
这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)
三、 process类的使用
# windows操作系统下 创建进程一定要在main内创建,
因为windows下创建进程类似于模块导入的方式,会从上往下依次执行代码
# linux中则是直接将代码完整地拷贝一份
注意:在windows中,Process() 必须放到 # if __name__ == '__main__':下
1、创建进程的两种方式
(1)、类实例化产生对象
# 第一种 from multiprocessing import Process import time def task(name): print('%s is running'%name) time.sleep(3) print('%s is over'%name) if __name__ == '__main__': # 1 创建一个对象 p = Process(target=task, args=('jason',)) # 容器类型哪怕里面只有1个元素 建议要用逗号隔开 # 2 开启进程 p.start() # 告诉操作系统帮你创建一个进程 异步 print('主')
(2)、类的继承 run方法
# 第二种方式 类的继承 from multiprocessing import Process import time class MyProcess(Process): def run(self): print('hello bf girl') time.sleep(1) print('get out!') if __name__ == '__main__': p = MyProcess() p.start() print('主')
2、进程之间的内存空间是隔离的
from multiprocessing import Process n=100 #在windows系统中应该把全局变量定义在if __name__ == '__main__'之上就可以了 def work(): global n n=0 print('子进程内: ',n) if __name__ == '__main__': p=Process(target=work) p.start() print('主进程内: ',n)
3、Process对象的join方法——join:是主进程在等,等待子进程结束
例子一
from multiprocessing import Process import time,os def task(): print('%s is running' %os.getpid()) time.sleep(3) if __name__ == '__main__': p=Process(target=task) p.start() p.join() # 等待进程p结束后,join函数内部会发送系统调用wait,去告诉操作系统回收掉进程p的id号 print(p.pid) # ???此时能否看到子进程p的id号 print('主') # ———————————————————————————— #答案:可以 #分析: p.join()是向操作系统发送请求,告知操作系统p的id号不需要再占用了,回收就可以, 此时在父进程内还可以看到p.pid,但此时的p.pid是一个无意义的id号,因为操作系统已经将该编号回收 打个比方: 我党相当于操作系统,控制着整个中国的硬件,每个人相当于一个进程,每个人都需要跟我党申请一个身份证号 该号码就相当于进程的pid,人死后应该到我党那里注销身份证号,p.join()就相当于要求我党回收身份证号,但p的家人(相当于主进程) 仍然持有p的身份证,但此刻的身份证已经没有意义
4、Process对象的其他方法或属性(了解)
from multiprocessing import Process import time import random class Piao(Process): def __init__(self,name): self.name=name super().__init__() def run(self): print('%s is piaoing' %self.name) time.sleep(random.randrange(1,5)) print('%s is piao end' %self.name) p1=Piao('egon1') p1.start() p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活 print(p1.is_alive()) #结果为True print('开始') print(p1.is_alive()) #结果为False
from multiprocessing import Process import time import random class Piao(Process): def __init__(self,name): # self.name=name # super().__init__() #Process的__init__方法会执行self.name=Piao-1, # #所以加到这里,会覆盖我们的self.name=name #为我们开启的进程设置名字的做法 super().__init__() self.name=name def run(self): print('%s is piaoing' %self.name) time.sleep(random.randrange(1,3)) print('%s is piao end' %self.name) p=Piao('egon') p.start() print('开始') print(p.pid) #查看pid
四、僵尸进程和孤儿进程
1、僵尸进程——“死了没死透”
僵尸进程(有害)
一个进程使用fork创建子进程,如果子进程退出,而父进程并没有调用wait或waitpid获取子进程的状态信息,那么子进程的进程描述符仍然保存在系统中。这种进程称之为僵死进程。
详解:我们知道在unix/linux中,正常情况下子进程是通过父进程创建的,子进程在创建新的进程。子进程的结束和父进程的运行是一个异步过程,即父进程永远无法预测子进程到底什么时候结束,如果子进程一结束就立刻回收其全部资源,那么在父进程内将无法获取子进程的状态信息。
#coding:utf-8 from multiprocessing import Process import time,os def run(): print('子',os.getpid()) if __name__ == '__main__': p=Process(target=run) p.start() print('主',os.getpid()) time.sleep(1000)
2、孤儿进程——“没爹没娘”
孤儿进程(无害)
一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成为孤儿进程。孤儿进程将被init进程(进程号为1)所收养,并由init进程对它们完成状态收集工作。
孤儿进程是没有父进程的进程,孤儿进程这个重任就落到了init进程身上,init进程就好像是一个民政局,专门负责处理孤儿进程的善后工作。每当出现一个孤儿进程的时候,内核就把孤 儿进程的父进程设置为init,而init进程会循环地wait()它的已经退出的子进程。这样,当一个孤儿进程凄凉地结束了其生命周期的时候,init进程就会代表党和政府出面处理它的一切善后工作。因此孤儿进程并不会有什么危害。
孤儿进程-测试
五 、守护进程
主进程创建守护进程——“皇帝(主进程)驾崩,好多陪葬(守护进程)”
其一:守护进程会在主进程代码执行结束后就终止
其二:守护进程内无法再开启子进程,
否则抛出异常:AssertionError: daemonic processes are not allowed to have children
注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止
from multiprocessing import Process import time import random class Piao(Process): def __init__(self,name): self.name=name super().__init__() def run(self): print('%s is piaoing' %self.name) time.sleep(random.randrange(1,3)) print('%s is piao end' %self.name) p=Piao('egon') p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行 p.start() print('主')
#主进程代码运行完毕,守护进程就会结束 from multiprocessing import Process from threading import Thread import time def foo(): print(123) time.sleep(1) print("end123") def bar(): print(456) time.sleep(3) print("end456") p1=Process(target=foo) p2=Process(target=bar) p1.daemon=True p1.start() p2.start() print("main-------") #打印该行则主进程代码结束,则守护进程p1应该被终止,可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止
六 、进程同步(互斥锁)
进程之间数据不共享,但是共享同一套文件系统,所以访问 同一个文件,或 同一个打印终端,是没有问题的,
而共享带来的是竞争,竞争带来的结果就是错乱,如何控制——加锁处理——牺牲效率,保证有序和数据安全
1、多个进程共享同一打印终端
#并发运行,效率高,但竞争同一打印终端,带来了打印错乱 from multiprocessing import Process import os,time def work(): print('%s is running' %os.getpid()) time.sleep(2) print('%s is done' %os.getpid()) if __name__ == '__main__': for i in range(3): p=Process(target=work) p.start()
#由并发变成了串行,牺牲了运行效率,但避免了竞争 from multiprocessing import Process,Lock import os,time def work(lock): lock.acquire() print('%s is running' %os.getpid()) time.sleep(2) print('%s is done' %os.getpid()) lock.release() if __name__ == '__main__': lock=Lock() for i in range(3): p=Process(target=work,args=(lock,)) p.start()
2、多个进程共享同一文件-- 文件当数据库,模拟抢票
#文件db的内容为:{"count":1} #注意一定要用双引号,不然json无法识别 from multiprocessing import Process,Lock import time,json,random def search(): dic=json.load(open('db.txt')) print('\033[43m剩余票数%s\033[0m' %dic['count']) def get(): dic=json.load(open('db.txt')) time.sleep(0.1) #模拟读数据的网络延迟 if dic['count'] >0: dic['count']-=1 time.sleep(0.2) #模拟写数据的网络延迟 json.dump(dic,open('db.txt','w')) print('\033[43m购票成功\033[0m') def task(lock): search() get() if __name__ == '__main__': lock=Lock() for i in range(100): #模拟并发100个客户端抢票 p=Process(target=task,args=(lock,)) p.start()
#文件db的内容为:{"count":1} #注意一定要用双引号,不然json无法识别 from multiprocessing import Process,Lock import time,json,random def search(): dic=json.load(open('db.txt')) print('\033[43m剩余票数%s\033[0m' %dic['count']) def get(): dic=json.load(open('db.txt')) time.sleep(0.1) #模拟读数据的网络延迟 if dic['count'] >0: dic['count']-=1 time.sleep(0.2) #模拟写数据的网络延迟 json.dump(dic,open('db.txt','w')) print('\033[43m购票成功\033[0m') def task(lock): search() lock.acquire() get() lock.release() if __name__ == '__main__': lock=Lock() for i in range(100): #模拟并发100个客户端抢票 p=Process(target=task,args=(lock,)) p.start()
3、总结——抛‘互斥锁’砖,引出‘管道队列’玉(请看第七部分--队列)
#加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
1.效率低(共享数据基于文件,而文件是硬盘上的数据)
2.需要自己加锁处理
#因此我们最好找寻一种解决方案能够兼顾——基于消息的IPC通信机制:队列和管道
1、效率高(多个进程共享一块内存的数据)
2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。
队列和管道都是将数据存放于内存中,
队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
七 、队列--生产者消费者模型
进程彼此之间互相隔离,要实现进程间通信(IPC :Inter-Process Communication),
multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的
1、类 Queue 的介绍与基本使用
(1)创建队列的类(底层就是以管道和锁定的方式实现):
Queue([maxsize]):创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。
参数介绍:
maxsize是队列中允许最大项数,省略则无大小限制。
(2)主要方法介绍:
q.put()
用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。
如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。
如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
q.get()
可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。
如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。
如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常.
q.get_nowait() 同q.get(False)
q.put_nowait() 同q.put(False)
q.empty()
调用此方法时q为空则返回True,该结果不可靠,比如在返回True的过程中,如果队列中又加入了项目。
q.full()
调用此方法时q已满则返回True,该结果不可靠,比如在返回True的过程中,如果队列中的项目被取走。
q.qsize()
返回队列中目前项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一样
栏目列表
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
SQL Server -- 解决存储过程传入参数作为s
关于JS定时器的整理
JS中使用Promise.all控制所有的异步请求都完
js中字符串的方法
import-local执行流程与node模块路径解析流程
检测数据类型的四种方法
js中数组的方法,32种方法
前端操作方法
数据类型
window.localStorage.setItem 和 localStorage.setIte
如何完美解决前端数字计算精度丢失与数