首页 > temp > 简明python教程 >
-
大佬整理的Python数据可视化时间序列案例,建议收藏(附代码)
前言
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。
时间序列
1、时间序列图
时间序列图用于可视化给定指标如何随时间变化。在这里,您可以了解1949年至1969年之间的航空客运流量如何变化。
# Import Data df = pd.read_csv('https://github.com/selva86/datasets/raw/master/AirPassengers.csv') # Draw Plot plt.figure(figsize=(16,10), dpi= 80) plt.plot('date', 'traffic', data=df, color='tab:red') # Decoration plt.ylim(50, 750) xtick_location = df.index.tolist()[::12] xtick_labels = [x[-4:] for x in df.date.tolist()[::12]] plt.xticks(ticks=xtick_location, labels=xtick_labels, rotation=0, fontsize=12, horizontalalignment='center', alpha=.7) plt.yticks(fontsize=12, alpha=.7) plt.title("Air Passengers Traffic (1949 - 1969)", fontsize=22) plt.grid(axis='both', alpha=.3) # Remove borders plt.gca().spines["top"].set_alpha(0.0) plt.gca().spines["bottom"].set_alpha(0.3) plt.gca().spines["right"].set_alpha(0.0) plt.gca().spines["left"].set_alpha(0.3) plt.show()
2、带有标记的时间序列图
下面的时间序列绘制了所有的波峰和波谷,并注释了选定特殊事件的发生。
# Import Data df = pd.read_csv('https://github.com/selva86/datasets/raw/master/AirPassengers.csv') # Get the Peaks and Troughs data = df['traffic'].values doublediff = np.diff(np.sign(np.diff(data))) peak_locations = np.where(doublediff == -2)[0] + 1 doublediff2 = np.diff(np.sign(np.diff(-1*data))) trough_locations = np.where(doublediff2 == -2)[0] + 1 # Draw Plot plt.figure(figsize=(16,10), dpi= 80) plt.plot('date', 'traffic', data=df, color='tab:blue', label='Air Traffic') plt.scatter(df.date[peak_locations], df.traffic[peak_locations], marker=mpl.markers.CARETUPBASE, color='tab:green', s=100, label='Peaks') plt.scatter(df.date[trough_locations], df.traffic[trough_locations], marker=mpl.markers.CARETDOWNBASE, color='tab:red', s=100, label='Troughs') # Annotate for t, p in zip(trough_locations[1::5], peak_locations[::3]): plt.text(df.date[p], df.traffic[p]+15, df.date[p], horizontalalignment='center', color='darkgreen') plt.text(df.date[t], df.traffic[t]-35, df.date[t], horizontalalignment='center', color='darkred') # Decoration plt.ylim(50,750) xtick_location = df.index.tolist()[::6] xtick_labels = df.date.tolist()[::6] plt.xticks(ticks=xtick_location, labels=xtick_labels, rotation=90, fontsize=12, alpha=.7) plt.title("Peak and Troughs of Air Passengers Traffic (1949 - 1969)", fontsize=22) plt.yticks(fontsize=12, alpha=.7) # Lighten borders plt.gca().spines["top"].set_alpha(.0) plt.gca().spines["bottom"].set_alpha(.3) plt.gca().spines["right"].set_alpha(.0) plt.gca().spines["left"].set_alpha(.3) plt.legend(loc='upper left') plt.grid(axis='y', alpha=.3) plt.show()
3、自相关(ACF)和部分自相关(PACF)图
ACF图显示了时间序列与其自身滞后的相关性。每条垂直线(在自相关图上)代表序列与从滞后0开始的滞后之间的相关性。图中的蓝色阴影区域是显着性水平。蓝线以上的那些滞后就是巨大的滞后。
那么如何解释呢?
对于AirPassengers,我们看到多达14个滞后已越过蓝线,因此意义重大。这意味着,距今已有14年之久的航空客运量对今天的客运量产生了影响。
另一方面,PACF显示了任何给定的(时间序列)滞后与当前序列之间的自相关,但是去除了两者之间的滞后。
# Import Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/economics.csv") x = df['date'] y1 = df['psavert'] y2 = df['unemploy'] # Plot Line1 (Left Y Axis) fig, ax1 = plt.subplots(1,1,figsize=(16,9), dpi= 80) ax1.plot(x, y1, color='tab:red') # Plot Line2 (Right Y Axis) ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis ax2.plot(x, y2, color='tab:blue') # Decorations # ax1 (left Y axis) ax1.set_xlabel('Year', fontsize=20) ax1.tick_params(axis='x', rotation=0, labelsize=12) ax1.set_ylabel('Personal Savings Rate', color='tab:red', fontsize=20) ax1.tick_params(axis='y', rotation=0, labelcolor='tab:red' ) ax1.grid(alpha=.4) # ax2 (right Y axis) ax2.set_ylabel("# Unemployed (1000's)", color='tab:blue', fontsize=20) ax2.tick_params(axis='y', labelcolor='tab:blue') ax2.set_xticks(np.arange(0, len(x), 60)) ax2.set_xticklabels(x[::60], rotation=90, fontdict={'fontsize':10}) ax2.set_title("Personal Savings Rate vs Unemployed: Plotting in Secondary Y Axis", fontsize=22) fig.tight_layout() plt.show()
4、交叉相关图
互相关图显示了两个时间序列之间的时滞。
from scipy.stats import sem # Import Data df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/user_orders_hourofday.csv") df_mean = df.groupby('order_hour_of_day').quantity.mean() df_se = df.groupby('order_hour_of_day').quantity.apply(sem).mul(1.96) # Plot plt.figure(figsize=(16,10), dpi= 80) plt.ylabel("# Orders", fontsize=16) x = df_mean.index plt.plot(x, df_mean, color="white", lw=2) plt.fill_between(x, df_mean - df_se, df_mean + df_se, color="#3F5D7D") # Decorations # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(1) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(1) plt.xticks(x[::2], [str(d) for d in x[::2]] , fontsize=12) plt.title("User Orders by Hour of Day (95% confidence)", fontsize=22) plt.xlabel("Hour of Day") s, e = plt.gca().get_xlim() plt.xlim(s, e) # Draw Horizontal Tick lines for y in range(8, 20, 2): plt.hlines(y, xmin=s, xmax=e, colors='black', alpha=0.5, linestyles="--", lw=0.5) plt.show()
5、时间序列分解图
时间序列分解图显示了时间序列按趋势,季节和残差成分的分解。
"Data Source: https://www.kaggle.com/olistbr/brazilian-ecommerce#olist_orders_dataset.csv" from dateutil.parser import parse from scipy.stats import sem # Import Data df_raw = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/orders_45d.csv', parse_dates=['purchase_time', 'purchase_date']) # Prepare Data: Daily Mean and SE Bands df_mean = df_raw.groupby('purchase_date').quantity.mean() df_se = df_raw.groupby('purchase_date').quantity.apply(sem).mul(1.96) # Plot plt.figure(figsize=(16,10), dpi= 80) plt.ylabel("# Daily Orders", fontsize=16) x = [d.date().strftime('%Y-%m-%d') for d in df_mean.index] plt.plot(x, df_mean, color="white", lw=2) plt.fill_between(x, df_mean - df_se, df_mean + df_se, color="#3F5D7D") # Decorations # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(1) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(1) plt.xticks(x[::6], [str(d) for d in x[::6]] , fontsize=12) plt.title("Daily Order Quantity of Brazilian Retail with Error Bands (95% confidence)", fontsize=20) # Axis limits s, e = plt.gca().get_xlim() plt.xlim(s, e-2) plt.ylim(4, 10) # Draw Horizontal Tick lines for y in range(5, 10, 1): plt.hlines(y, xmin=s, xmax=e, colors='black', alpha=0.5, linestyles="--", lw=0.5) plt.show()
6、多时间序列图
您可以在同一张图表上绘制测量同一值的多个时间序列,如下所示。
"Data Source: https://www.kaggle.com/olistbr/brazilian-ecommerce#olist_orders_dataset.csv" from dateutil.parser import parse from scipy.stats import sem # Import Data df_raw = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/orders_45d.csv', parse_dates=['purchase_time', 'purchase_date']) # Prepare Data: Daily Mean and SE Bands df_mean = df_raw.groupby('purchase_date').quantity.mean() df_se = df_raw.groupby('purchase_date').quantity.apply(sem).mul(1.96) # Plot plt.figure(figsize=(16,10), dpi= 80) plt.ylabel("# Daily Orders", fontsize=16) x = [d.date().strftime('%Y-%m-%d') for d in df_mean.index] plt.plot(x, df_mean, color="white", lw=2) plt.fill_between(x, df_mean - df_se, df_mean + df_se, color="#3F5D7D") # Decorations # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(1) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(1) plt.xticks(x[::6], [str(d) for d in x[::6]] , fontsize=12) plt.title("Daily Order Quantity of Brazilian Retail with Error Bands (95% confidence)", fontsize=20) # Axis limits s, e = plt.gca().get_xlim() plt.xlim(s, e-2) plt.ylim(4, 10) # Draw Horizontal Tick lines for y in range(5, 10, 1): plt.hlines(y, xmin=s, xmax=e, colors='black', alpha=0.5, linestyles="--", lw=0.5) plt.show()
7、双y轴图
如果要显示在同一时间点测量两个不同量的两个时间序列,则可以在右边的第二个Y轴上再次绘制第二个序列。
"Data Source: https://www.kaggle.com/olistbr/brazilian-ecommerce#olist_orders_dataset.csv" from dateutil.parser import parse from scipy.stats import sem # Import Data df_raw = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/orders_45d.csv', parse_dates=['purchase_time', 'purchase_date']) # Prepare Data: Daily Mean and SE Bands df_mean = df_raw.groupby('purchase_date').quantity.mean() df_se = df_raw.groupby('purchase_date').quantity.apply(sem).mul(1.96) # Plot plt.figure(figsize=(16,10), dpi= 80) plt.ylabel("# Daily Orders", fontsize=16) x = [d.date().strftime('%Y-%m-%d') for d in df_mean.index] plt.plot(x, df_mean, color="white", lw=2) plt.fill_between(x, df_mean - df_se, df_mean + df_se, color="#3F5D7D") # Decorations # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(1) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(1) plt.xticks(x[::6], [str(d) for d in x[::6]] , fontsize=12) plt.title("Daily Order Quantity of Brazilian Retail with Error Bands (95% confidence)", fontsize=20) # Axis limits s, e = plt.gca().get_xlim() plt.xlim(s, e-2) plt.ylim(4, 10) # Draw Horizontal Tick lines for y in range(5, 10, 1): plt.hlines(y, xmin=s, xmax=e, colors='black', alpha=0.5, linestyles="--", lw=0.5) plt.show()
8、具有误差带的时间序列
如果您具有每个时间点(日期/时间戳)具有多个观测值的时间序列数据集,则可以构建带有误差带的时间序列。您可以在下面看到一些基于一天中不同时间下达的订单的示例。另一个例子是在45天的时间内到达的订单数量。
在这种方法中,订单数量的平均值由白线表示。然后计算出95%的置信带并围绕均值绘制。
"Data Source: https://www.kaggle.com/olistbr/brazilian-ecommerce#olist_orders_dataset.csv" from dateutil.parser import parse from scipy.stats import sem # Import Data df_raw = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/orders_45d.csv', parse_dates=['purchase_time', 'purchase_date']) # Prepare Data: Daily Mean and SE Bands df_mean = df_raw.groupby('purchase_date').quantity.mean() df_se = df_raw.groupby('purchase_date').quantity.apply(sem).mul(1.96) # Plot plt.figure(figsize=(16,10), dpi= 80) plt.ylabel("# Daily Orders", fontsize=16) x = [d.date().strftime('%Y-%m-%d') for d in df_mean.index] plt.plot(x, df_mean, color="white", lw=2) plt.fill_between(x, df_mean - df_se, df_mean + df_se, color="#3F5D7D") # Decorations # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(1) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(1) plt.xticks(x[::6], [str(d) for d in x[::6]] , fontsize=12) plt.title("Daily Order Quantity of Brazilian Retail with Error Bands (95% confidence)", fontsize=20) # Axis limits s, e = plt.gca().get_xlim() plt.xlim(s, e-2) plt.ylim(4, 10) # Draw Horizontal Tick lines for y in range(5, 10, 1): plt.hlines(y, xmin=s, xmax=e, colors='black', alpha=0.5, linestyles="--", lw=0.5) plt.show()
"Data Source: https://www.kaggle.com/olistbr/brazilian-ecommerce#olist_orders_dataset.csv" from dateutil.parser import parse from scipy.stats import sem # Import Data df_raw = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/orders_45d.csv', parse_dates=['purchase_time', 'purchase_date']) # Prepare Data: Daily Mean and SE Bands df_mean = df_raw.groupby('purchase_date').quantity.mean() df_se = df_raw.groupby('purchase_date').quantity.apply(sem).mul(1.96) # Plot plt.figure(figsize=(16,10), dpi= 80) plt.ylabel("# Daily Orders", fontsize=16) x = [d.date().strftime('%Y-%m-%d') for d in df_mean.index] plt.plot(x, df_mean, color="white", lw=2) plt.fill_between(x, df_mean - df_se, df_mean + df_se, color="#3F5D7D") # Decorations # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(1) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(1) plt.xticks(x[::6], [str(d) for d in x[::6]] , fontsize=12) plt.title("Daily Order Quantity of Brazilian Retail with Error Bands (95% confidence)", fontsize=20) # Axis limits s, e = plt.gca().get_xlim() plt.xlim(s, e-2) plt.ylim(4, 10) # Draw Horizontal Tick lines