首页 > temp > 简明python教程 >
-
python基础(32):进程(二)(5)
#加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。 虽然可以用文件共享数据实现进程间通信,但问题是:
1.效率低(共享数据基于文件,而文件是硬盘上的数据) 2.需要自己加锁处理
因此我们最好找寻一种解决方案能够兼顾:
1.效率高(多个进程共享一块内存的数据)
2.帮我们处理好锁问题
这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。 队列和管道都是将数据存放于内存中 队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来, 我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
1.3 队列(multiprocess.Queue)
1.3.1 队列
(1) 概念介绍
创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。
Queue([maxsize])
创建共享的进程队列。
参数 :maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。
底层队列使用管道和锁定实现。
方法介绍:
Queue([maxsize])
创建共享的进程队列。maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。底层队列使用管道和锁定实现。另外,还需要运行支持线程以便队列中的数据传输到底层管道中。 Queue的实例q具有以下方法:
q.get( [ block [ ,timeout ] ] )
返回q中的一个项目。如果q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 如果设置为False,将引发Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。如果在制定的时间间隔内没有项目变为可用,将引发Queue.Empty异常。
q.get_nowait( )
同q.get(False)方法。
q.put(item [, block [,timeout ] ] )
将item放入队列。如果队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为True。如果设置为False,将引发Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引发Queue.Full异常。
q.qsize()
返回队列中目前项目的正确数量。此函数的结果并不可靠,因为在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引发NotImplementedError异常。
q.empty()
如果调用此方法时 q为空,返回True。如果其他进程或线程正在往队列中添加项目,结果是不可靠的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。
q.full()
如果q已满,返回为True. 由于线程的存在,结果也可能是不可靠的(参考q.empty()方法)。
其他方法(了解):
q.close()
关闭队列,防止队列中加入更多数据。调用此方法时,后台线程将继续写入那些已入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将自动调用此方法。关闭队列不会在队列使用者中生成任何类型的数据结束信号或异常。例如,如果某个使用者正被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。
q.cancel_join_thread()
不会再进程退出时自动连接后台线程。这可以防止join_thread()方法阻塞。
q.join_thread()
连接队列的后台线程。此方法用于在调用q.close()方法后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread()方法可以禁止这种行为。
(2) 代码实例
- '''
- multiprocessing模块支持进程间通信的两种主要形式:管道和队列
- 都是基于消息传递实现的,但是队列接口
- '''
- from multiprocessing import Queue
- q=Queue(3)
- #put ,get ,put_nowait,get_nowait,full,empty
- q.put(3)
- q.put(3)
- q.put(3)
- # q.put(3) # 如果队列已经满了,程序就会停在这里,等待数据被别人取走,再将数据放入队列。
- # 如果队列中的数据一直不被取走,程序就会永远停在这里。
- try:
- q.put_nowait(3) # 可以使用put_nowait,如果队列满了不会阻塞,但是会因为队列满了而报错。
- except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。
- print('队列已经满了')
- # 因此,我们再放入数据之前,可以先看一下队列的状态,如果已经满了,就不继续put了。
- print(q.full()) #满了
- print(q.get())
- print(q.get())
- print(q.get())
- # print(q.get()) # 同put方法一样,如果队列已经空了,那么继续取就会出现阻塞。
- try:
- q.get_nowait(3) # 可以使用get_nowait,如果队列满了不会阻塞,但是会因为没取到值而报错。
- except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去。
- print('队列已经空了')
- print(q.empty()) #空了
上面这个例子还没有加入进程通信,只是先来看看队列为我们提供的方法,以及这些方法的使用和现象。
子进程发送数据给父进程:
- import time
- from multiprocessing import Process, Queue
- def f(q):
- q.put([time.asctime(), 'from Eva', 'hello']) #调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据。
- if __name__ == '__main__':
- q = Queue() #创建一个Queue对象
- p = Process(target=f, args=(q,)) #创建一个进程
- p.start()
- print(q.get())
- p.join()
上面是一个queue的简单应用,使用队列q对象调用get函数来取得队列中最先进入的数据。 接下来看一个稍微复杂一些的例子:
批量生产数据放入队列再批量获取结果:
- import os
- import time
- import multiprocessing
- # 向queue中输入数据的函数