VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > temp > 简明python教程 >
  • 【Python | opencv+PIL】常见操作(创建、添加帧、绘图、读取等)的效率对比及其

一、背景

本人准备用python做图像和视频编辑的操作,却发现opencv和PIL的效率并不是很理想,并且同样的需求有多种不同的写法并有着不同的效率。见全网并无较完整的效率对比文档,遂决定自己丰衣足食。

 

二、目的

本篇文章将对Python下的opencv接口函数及PIL(Pillow)函数的常用部分进行逐个运行并计时(多次测算取平均时间和最短时间,次数一般在100次以上),并简单使用numba、ctypes、cython等方法优化代码。

 

三、测试方法及环境

1.硬件

CPU:Intel(R) Core(TM) i3-3220 CPU @ 3.30GHz 3.30 GHz

内存:4.00 GB

硬盘:ATA WDC WD5000AAKX-7 SCSI Disk Device

2.软件:

操作系统:Windows 7 Service Pack 1 Ultimate 64bit zh-cn

Python解释器:3.7.5 64bit (provided by Anaconda)

各模块:皆为最新

(事情有所变化,暂时使用下面机房电脑的配置进行测试)

1.硬件

CPU:Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz 2.10 GHz

内存:3.00 GB

硬盘:VMware Virtual disk SCSI Disk Service

2.软件:

操作系统:Windows 7 Service Pack 1 Ultimate 64bit zh-cn (powered by VMware Horizon View Client)

Python解释器:3.7.3 64bit (provided by Anaconda)

各模块:皆为最新

 

四、具体实现

1.待测试函数

以下定义新建的视频规定为MP4格式、mp4v编码、1920*1080尺寸、60帧速率;定义新建的图片为JPG格式、1920*1080尺寸、RGB通道。

根据实际需要(其实是我自己的需要),先暂定测试以下函数[1][2]:  

1)创建视频

vw = cv2.VideoWriter('out.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 60, (1920, 1080)) # Return MP4 video object

2)视频帧读取(视频不好做测试数据,故使用了手头上现成的。in.mp4参数:时长27秒,尺寸1920x1080,数据速率17073kbps,总比特率17331kbps,帧速率29fps,大小55.7MB)

cap = cv2.VideoCapture('in.mp4')

while cap.isOpened():
    ret, frame = cap.read() # frame return a numpy.ndarray object (WRITEABLE) with RGB of pixels
    if not ret: # Return True when read operation is successful
        break # Read operation fails and break

cap.release()

3)视频帧写入[3] (PS:为什么Opencv官方教程中没有这个函数...)

vw.write(frame)

4)写入视频(后来发现这个应该类似于file.close(),只是一个释放文件对象的过程,并不是真的在这个时候写入所有的数据。之前看见在release之前文件是空的应该是数据还没有从内存写入磁盘导致的)

vw.release()

5)创建图片 ( matrix & pillow object )

# Matrix
arr = np.zeros((1080, 1920, 3), dtype=np.uint8) # numpy中xy貌似是颠倒的,于是长1920宽1080的图像输出的shape应该是1080x1920,第三维度3表示图片通道为RGB
# Return a numpy.ndarray object (WRITEABLE)

# Pillow
img = Image.new('RGB', (1920, 1080)) # 这里的xy没有颠倒

6)图片读取(opencv & pillow)(使用新建的图片,满足上面的定义,大小33kb)

# OpenCV
arr = cv2.imread('in.jpg') # Notice that OpenCV don't support ALPHA channel

# Pillow
img = Image.open('in.jpg') # Return a PIL.Image.Image object

7)图片数据结构转换

arr1 = list(img.im) # Return a list

arr2 = np.asarray(img) # Return a np.ndarray object (NOT WRITEABLE) (Shallow copy)

arr3 = np.array(img) # Return a np.ndarray object (WRITEABLE) (Deep copy)

8)图片点操作(matrix & pillow object )

# Matrix
arr3[0][0] = (255, 255, 255)

# Pillow
img.putpixel((0, 0), (255, 255, 255)) # Putpixel

draw = ImageDraw.Draw(img) # ImageDraw.Point
draw.point((0, 0), (255, 255, 255))

# PS: OpenCV don't has a function that draw a pixel directly so we don't show the code here

9)图片其他绘图操作(matrix & pillow object & opencv )

这里我们测试画直线、画矩形、画圆(不包括matrix)、画椭圆操作(不包括matrix)、绘制文字(不包括matrix)。

注:pillow中默认绘制的图形都是实心的[4],而opencv要设置线宽为负值才是实心的[5]。

### Line
# Matrix
for x in range(100, 500):
    arr3[100][x] = (255, 255, 255) # 注意到numpy的颠倒

# Pillow
draw.line((100, 100, 500, 100), (255, 255, 255))

# OpenCV
cv2.line(arr, (100, 100), (500, 100), (255, 255, 255), 1) # 最后的1表示线宽

### Rectangle
# Matrix
for x in range(100, 500):
    for y in range(100, 500):
        arr3[y][x] = (255, 255, 255)

# Pillow
draw.rectangle((100, 100, 500, 500), (255, 255, 255))

# OpenCV
cv2.rectangle(arr, (100, 100), (500, 500), (255, 255, 255), -1)

### Circle
# Pillow
draw.arc((100, 100, 500, 500), 0, 360, (255, 255, 255)) # PIL.ImageDraw.Draw.arc
# arc方法前一个四元元组表示圆弧的左上点右下点,这里表示半径200、中心(300, 300);后面两个整数表示度数(0-360表示整个圆)

draw.ellipse((100, 100, 500, 500), (255, 255, 255)) # PIL.ImageDraw.Draw.ellipse
# ellipse方法同样表示两点

# OpenCV
cv2.circle(arr, (300, 300), 200, (255, 255, 255), -1) # cv2.circle
# 与Pillow不同的是,这里读取的是中心点和半径,更符合正常的习惯;1表示线宽,如果是-1则是实心圆

cv2.ellipse(arr, (300, 300), (200, 200), 0, 0, 360, (255, 255, 255), -1) # cv2.ellipse
# 这里第一个二元组是椭圆中心,第二个二元组分别表示半长轴长和半短轴长(注:中文文档漏掉了“半”字),后面三个参数分别表示椭圆本身逆时针旋转角(相当于坐标轴旋转)、起始角度和终止角度(0-360表示整个圆)

### Ellipse
# Pillow
draw.ellipse((100, 100, 700, 500), (255, 255, 255)) # 表示椭圆中心(400, 300),半长轴300,半短轴200

# OpenCV
cv2.ellipse(arr, (400, 300), (300, 200), 0, 0, 360, (255, 255, 255), -1)

### Text
# Pillow
font = ImageFont.truetype('simkai.ttf', 32) # 楷体,字号32
draw.text((100, 100), 'Hello, world!', (255, 255, 255), font) # 这里的坐标是左上角

# OpenCV
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(arr, 'Hello, world!', (100, 200), font, 2, (255, 255, 255), 1, cv2.LINE_AA) # 这里的坐标是左下角,1表示线宽(cv2不支持中文输出,故不测试中文)

其中opencv的字体参数参考:[6]

10)图片其他操作

11)写入图片( Pillow & OpenCV)

# Pillow
img.save('out.jpg')

# OpenCV
cv2.imwrite('out.jpg', arr) # Read from cv2.imread

cv2.imwrite('out.jpg', arr2) # np.asarray

cv2.imwrite('out.jpg', arr3) # np.array

 

2.时间计算工具

这里的时间计算工具用一个类实现给定次数的循环智能循环(自动控制循环次数)的功能,并能给出每次循环的函数返回值、循环次数、平均时间、最短时间、最长时间、总共用时。

对于自动判断循环次数的算法参考了Python的timeit模块源码(autorange函数)[7]:

复制代码
 1 # -*- coding: utf-8 -*-
 2 
 3 import time
 4 import cv2
 5 from PIL import Image, ImageDraw, ImageFont
 6 import numpy as np
 7 
 8 # Class
 9 class FunctionTimer(object):
10     MAX_WAIT_SEC = 0.5
11     INF = 2147483647
12     SMART_LOOP = -1
13     
14     def __init__(self, timer=None, count=None):
15         self._timer = timer if timer != None else time.perf_counter
16         self._count = count if count != None else 100
17         
18     def _get_single_time(self, func, *args, **kwargs):
19         s = self._timer()
20         ret = func(*args, **kwargs)
21         f = self._timer()
22         return ret, f - s
23         
24     def _get_repeat_time(self, number, func, *args, **kwargs):
25         time_min, time_max, time_sum = self.INF, 0, 0
26         for i in range(number):
27             ret, delta = self._get_single_time(func, *args, **kwargs)
28             time_min = min(time_min, delta)
29             time_max = max(time_max, delta)
30             time_sum += delta
31         return func, ret, number, time_sum / number, time_min, time_max, time_sum
32         
33     def gettime(self, func, *args, **kwargs):
34         if self._count != self.SMART_LOOP:
35             return self._get_repeat_time(self._count, func, *args, **kwargs)
36         else:
37             # Arrange loop count automatically
38             # Refer to Lib/timeit.py
39             i = 1
40             while True:
41                 for j in 1, 2, 5:
42                     number = i * j
43                     func, ret, number, time_ave, time_min, time_max, time_sum = self._get_repeat_time(number, func, *args, **kwargs)
44                     if time_sum >= self.MAX_WAIT_SEC:
45                         return func, ret, number, time_ave, time_min, time_max, time_sum
46                 i *= 10
47             
48     def better_print(self, params):
49         func, ret, count, ave, minn, maxn, sumn = params
50         print('========================================')
51         print(' Function name:')
52         print(' ' + func.__repr__())
53         print('========================================')
54         print(' Function has the return content below:')
55         print(' ' + ret.__name__)
56         print('========================================')
57         print(' Summary of Function Timer:')
58         print(' Count of loops: {}'.format(count))
59         print(' Average time of loops: {} (sec)'.format(ave))
60         print(' Minimum of every loop time: {} (sec)'.format(minn))
61         print(' Maximum of every loop time: {} (sec)'.format(maxn))
62         print(' Total time of loops: {} (sec)'.format(sumn))
63         print('========================================')
64 
65 # Function
66 def testfunc(x=10000000):
67     for i in range(x):
68         pass
69     return i
70             
71 # Main Function
72 timer = FunctionTimer()
复制代码

测试结果(将整个文件作为模块以op为名字调用):

In [168]: op.timer.better_print(op.timer.gettime(op.testfunc, 10000))
========================================
 Function name:
 testfunc
========================================
 Function has the return content below:
 9999
========================================
 Summary of Function Timer:
 Count of loops: 100
 Average time of loops: 0.00039519199983260476 (sec)
 Minimum of every loop time: 0.0002532999988034135 (sec)
 Maximum of every loop time: 0.0010392999993200647 (sec)
 Total time of loops: 0.03951919998326048 (sec)
========================================

In [169]: op.timer.better_print(op.timer.gettime(op.testfunc, 100000))
========================================
 Function name:
 testfunc
========================================
 Function has the return content below:
 99999
========================================
 Summary of Function Timer:
 Count of loops: 100
 Average time of loops: 0.0029596240000137187 (sec)
 Minimum of every loop time: 0.002567899999121437 (sec)
 Maximum of every loop time: 0.006201700000019628 (sec)
 Total time of loops: 0.29596240000137186 (sec)
========================================

In [170]: op.timer.better_print(op.timer.gettime(op.testfunc, 10))
========================================
 Function name:
 testfunc
========================================
 Function has the return content below:
 9
========================================
 Summary of Function Timer:
 Count of loops: 100
 Average time of loops: 9.039999349624849e-07 (sec)
 Minimum of every loop time: 7.999988156370819e-07 (sec)
 Maximum of every loop time: 2.6999987312592566e-06 (sec)
 Total time of loops: 9.03999934962485e-05 (sec)
========================================

 

3.完整代码

 

复制代码
  1 # opencv_pil_time.py
  2 
  3 # -*- coding: utf-8 -*-
  4 
  5 import time
  6 import cv2
  7
      



  

相关教程