VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > temp > 简明python教程 >
  • Python numpy的基本操作你一般人都不会(2)

1],[0,1]]) arr2=np.arange(4).reshape((2,2))# 形变 print(arr1) print(arr2) # 点乘运算 arr3 = np.dot(arr1,arr2) print(arr3)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

6.3 其他矩阵特征运算

import numpy as np
A = np.arange(2,14).reshape((3,4)) 
print("A =",A)
print("sum =",np.sum(A,axis=1))
print("min =",np.min(A,axis=0))
print("max =",np.max(A,axis=1))
print("全矩阵mean =",np.average(A))    
print("不同维度mean =",np.average(A,axis=0))    
print("全矩阵mean =",np.mean(A))     
print("不同维度mean =",np.mean(A,axis=1))  
print("中位数 = ",np.median(A))       # 7.5中位数
# argmin() 和 argmax() 两个函数分别对应着求矩阵中最小元素和最大元素的索引。
# 相应的,在矩阵的12个元素中,最小值即2,对应索引0,最大值为13,对应索引为11。 
print("最小值索引",np.argmin(A))    # 0
print("最大值索引",np.argmax(A))    # 11
print("累加矩阵 = ",np.cumsum(A))   #累加函数 (返回的是以为数组) 生成的矩阵每一个元素均是从原矩阵首项累加到对应项的元素之和
print("累差矩阵 = ",np.diff(A))    #累差运算函数
x,y = np.nonzero(A)    #将所有非零元素的行与列坐标分割开,重构成两个分别关于行和列的矩阵
print("非零行坐标 = ",x)
print("非零列坐标 = ",y)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

6.3 排序、转置、数值裁剪

import numpy as np
A = np.arange(14,2, -1).reshape((3,4)) 
print("A = ",A)
print("A默认维度排序 = ",np.sort(A))    
print("A其他维度排序 = ",np.sort(A,axis = 0))    
print("A转置 = ",np.transpose(A))   #转置
print("A转置 = ",A.T)#转置
print("矩阵数值裁剪 = ",np.clip(A,5,9))    #后面的最小值最大值则用于让函数判断矩阵中元素是否有比最小值小的或者比最大值大的元素,并将这些指定的元素转换为最小值或者最大值。
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

7、其他操作

7.1 横纵向的拼接

import numpy as np
A = np.array([1,1,1])
B = np.array([2,2,2])
# vertical stack上下合并
C = np.vstack((A,B))
print(C.shape)
print(C)
# horizontal stack左右合并
D = np.hstack((A,B))       
print(D.shape)
print(D)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

A = np.array([[1,1,1],[1,1,1]])
B = np.array([[2,2,2],[2,2,2]])
C = np.concatenate((A,B,B,A),axis=0)
print("(A,B,B,A),axis=0 = ")
print(C)
D = np.concatenate((A,B,B,A),axis=1)
print("(A,B,B,A),axis=1 = ")
print(D)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

7.2 矩阵添加或拼接新元素(append或concatenate)

import numpy as np
A = np.array([1,1,1])
B = np.concatenate((A,[100])) # 先将p_变成list形式进行拼接,注意输入为一个tuple
C = np.append(B,200) #直接向p_arr里添加p_
#注意一定不要忘记用赋值覆盖原p_arr不然不会变
print(B.shape)
print(B)
print(C.shape)
print(C)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

7.3 新增维度

import numpy as np

#这样改变维度的作用往往是将一维的数据转变成一个矩阵,与代码后面的权重矩阵进行相乘, 否则单单的数据是不能呢这样相乘的哦。
A = np.array([1,1,1])
print(type(np.newaxis))
print(np.newaxis==None)#np.newaxis 在使用和功能上等价于 None
print("A:",A)
print("A.shape:",A.shape)
print("A[np.newaxis,:]:",A[np.newaxis,:])
print("A[np.newaxis,:].shape:",A[np.newaxis,:].shape)
print("A[:,np.newaxis]:",A[:,np.newaxis])
print("A[:,np.newaxis].shape:",A[:,np.newaxis].shape)
print("A[np.newaxis,:,np.newaxis].shape:",A[np.newaxis,:,np.newaxis].shape)
# (3,1)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

7.4 增减数组维度

import numpy as np
# 假设a的shape为[1000,128,128]
a = np.random.rand(1000,128,128)
print(a.shape)
# expand_dims为增加内容为空的维度
b=np.expand_dims(a,axis=0)
print(b.shape)
b=np.expand_dims(a,axis=1)
print(b.shape)
b=np.expand_dims(a,axis=2)
print(b.shape)
b=np.expand_dims(a,axis=3)
print(b.shape)
# squeeze为删除内容为空的维度
c=np.squeeze(b)
print(c.shape)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

7.5 矩阵的切片

import numpy as np
A = np.arange(12).reshape((3, 4))
print("A = ")
print(A)
B1,B2 = np.split(A, 2, axis=1)# 返回的是一个列表  里面两个元素分别为切片后的array矩阵
print(np.split(A, 2, axis=1))
print("B1 = ",B1)
print("B2 = ",B2)
C1,C2,C3 = np.split(A, 3, axis=0)
print(np.split(A, 3, axis=0))
print("C1 = ",C1)
print("C2 = ",C2)
print("C3 = ",C3)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

import numpy as np
A = np.arange(12).reshape((3, 4))
D1,D2,D3 = np.array_split(A, 3, axis=1)
print(np.array_split(A, 3, axis=1))
print(D1)
print(D2)
print(D3)
E1,E2,E3 = np.vsplit(A, 3) # 纵向切割
print(np.vsplit(A, 3))
print(E1)
print(E2)
print(E3)
F1,F2 = np.hsplit(A, 2) # 水平切割
print(np.hsplit(A, 2)) 
print(F1)
print(F2)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

7.6 reshape,ravel,flatten,transpose,shape,resize更改数组形状

import numpy as np

a = np.arange(24)
print('a = ',a)
b = a.reshape(2,3,4)
print('reshape = ',b)
# ravel函数 可以将多维数组展平(也就是变回一维)
c = b.ravel()
print('ravel = ',c)
# flatten函数  也是将多维数组展平,与ravel函数的功能相同,不过flatten函数会请求分配内存来保存结果,而ravel函数只是返回数组的一个视图(view)
c = b.flatten()
print('flatten = ',c)
# 这种做法将直接改变所操作的数组
b.shape = (6,
      



  

相关教程