VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > temp > 简明python教程 >
  • 机器学习实战:基于Scikit-Learn和TensorFlow 读书笔记 第6章 决策树

数据挖掘作业,要实现决策树,现记录学习过程

win10系统,Python 3.7.0

构建一个决策树,在鸢尾花数据集上训练一个DecisionTreeClassifier:

复制代码
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
iris = load_iris()
X = iris.data[:,2:]
y = iris.target
tree_clf = DecisionTreeClassifier(max_depth=2)
tree_clf.fit(X,y)
复制代码

要将决策树可视化,首先,使用export_graphviz()方法输出一个图形定义文件,命名为iris_tree.dot

 

这里需要安装graphviz

安装方式:

① conda install python-graphviz

② pip install graphviz

在当前目录下新建images/decision_trees目录

不然会报错

Traceback (most recent call last):
File "decisiontree.py", line 21, in <module>
filled=True)
File "E:\Anaconda\lib\site-packages\sklearn\tree\export.py", line 762, in export_graphviz
out_file = open(out_file, "w", encoding="utf-8")
FileNotFoundError: [Errno 2] No such file or directory: '.\\images\\decision_trees\\iris_tree.dot'

复制代码
from sklearn.tree import export_graphviz
import os
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "decision_trees"
def image_path(fig_id):
    return os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id)

export_graphviz(tree_clf,
                out_file=image_path("iris_tree.dot"),
                feature_names=iris.feature_names[2:],
                class_names=iris.target_names,
                rounded=True,
                filled=True)      
复制代码

运行过后生成了一个dot文件

 

 

 使用命令dot -Tpng iris_tree.dot -o iris_tree.png 将dot文件转换为png文件方便显示

 

 

 

 决策树如上图所示

petal length:花瓣长度   petal width:花瓣宽度

samples:统计出它应用于多少个训练样本实例

value:这个节点对于每一个类别的样例有多少个  这个叶结点显示包含0 个 Iris-Setosa,1 个 Iris-Versicolor 和 45 个 Iris-Virginica

 Gini:用于测量它的纯度,如果一个节点包含的所有训练样例全都是同一类别的,我们就说这个节点是纯的( Gini=0 )

Gini公式:

 Pik是第i个节点上,类别为k的训练实例占比

 

 

 

深度为 2 的左侧节点基尼指数为: 1 - (0/54)² - (49/54)² - (5/54)² = 0.68

进行预测

当找到了一朵鸢尾花并且想对它进行分类时,从根节点开始,询问花朵的花瓣长度是否小于2.45厘米。如果是,将向下移动到根的左侧子节点,在这种情况下,它是一片叶子节点,它不会再继续问任何问题,决策树预测你的花是iris-setosa

 

假设你找到了另一朵花,但这次的花瓣长度是大于2.45厘米的。必须向下移动到根的右侧子节点,而这个节点不是叶节点,它会问另一个问题,花瓣宽度是否小于1.75厘米?如果是,则将这朵花分类成iris-versicolor ,不是,则分类成iris-versicolor

 

注意:scikit-learn使用的是CART算法,该算法仅生成二叉树;非叶节点永远只有两个子节点。

估计分类概率

新样本:花瓣长5厘米,花瓣宽1.5厘米,预测具体的类

print(tree_clf.predict_proba([[5,1.5]]))
print(tree_clf.predict([[5,1.5]]))

此处说明分类为iris-setosa的概率为0,分类为iris-versicolor的概率为0.90740741,分类为iris-virginica的概率为0.09259259

通过predict预测该花为iris-versicolor

 完整代码

复制代码
#在鸢尾花数据集上进行一个决策树分类器的训练
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
import os
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "decision_trees"
def image_path(fig_id):
    return os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id)

iris = load_iris()
X = iris.data[:,2:]
y = iris.target
tree_clf = DecisionTreeClassifier(max_depth=2)
tree_clf.fit(X,y)
export_graphviz(tree_clf,
                out_file=image_path("iris_tree.dot"),
                feature_names=iris.feature_names[2:],
                class_names=iris.target_names,
                rounded=True,
                filled=True)      
print(tree_clf.predict_proba([[5,1.5]]))
#[0]:iris-setosa,     [1]:iris-versicolor,    [2]:iris-virginica"
print(tree_clf.predict([[5,1.5]]))
复制代码

 

CART训练算法原理介绍:

Scikit-Learn使用的是分类与回归树(Classification And Regression Tree,简称CART)算法来训练决策树(也叫作“生长”树)。想法非常简单:首先,使用单个特征k和阈值tk(例如,花瓣长度≤2.45厘米)将训练集分成两个子集。k和阈值tk怎么选择?答案是产生出最纯子集(受其大小加权)的k和tk就是经算法搜索确定的(t,tk)。


相关教程