VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > temp > 简明python教程 >
  • 用 Python 了解一下最炫国漫《雾山五行》

看动漫的小伙伴应该知道最近出了一部神漫《雾山五行》,其以极具特色的水墨画风和超燃的打斗场面广受好评,首集播出不到 24 小时登顶 B 站热搜第一,豆瓣开分 9.5,火爆程度可见一斑,就打斗场面而言,说是最炫动漫也不为过,当然唯一有一点不足之处就是集数有点少,只有 3 集。

下面放几张动图,一起欣赏一下。

看过动图之后,是不是觉得我所说的最炫动漫,并非虚言,接下来我们爬取一些评论,了解一下大家对这部动漫的看法,这里我们选取 B 站、微博和豆瓣这 3 个平台来爬取数据。

爬取 B 站

我们先来爬取 B 站弹幕数据,动漫链接为:https://www.bilibili.com/bangumi/play/ep331423,弹幕链接为:http://comment.bilibili.com/186803402.xml,爬取代码如下:


		
1
2
3
4
5
6
7
8
9
10
11
12
url = "http://comment.bilibili.com/218796492.xml"
req = requests.get(url)
html = req.content
html_doc = str(html, "utf-8")  # 修改成utf-8
# 解析
soup = BeautifulSoup(html_doc, "lxml")
results = soup.find_all('d')
contents = [x.text for x in results]
# 保存结果
dic = {"contents": contents}
df = pd.DataFrame(dic)
df["contents"].to_csv("bili.csv", encoding="utf-8", index=False)

如果对爬取 B 站弹幕数据不了解的小伙伴可以看一下:爬取 B 站弹幕。

我们接着将爬取的弹幕数据生成词云,代码实现如下:


		
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
def jieba_():
    # 打开评论数据文件
    content = open("bili.csv", "rb").read()
    # jieba 分词
    word_list = jieba.cut(content)
    words = []
    # 过滤掉的词
    stopwords = open("stopwords.txt", "r", encoding="utf-8").read().split("\n")[:-1]
    for word in word_list:
        if word not in stopwords:
            words.append(word)
    global word_cloud
    # 用逗号隔开词语
    word_cloud = ','.join(words)

def cloud():
    # 打开词云背景图
    cloud_mask = np.array(Image.open("bg.png"))
    # 定义词云的一些属性
    wc = WordCloud(
        # 背景图分割颜色为白色
        background_color='white',
        # 背景图样
        mask=cloud_mask,
        # 显示最大词数
        max_words=500,
        # 显示中文
        font_path='./fonts/simhei.ttf',
        # 最大尺寸
        max_font_size=60,
        repeat=True
    )
    global word_cloud
    # 词云函数
    x = wc.generate(word_cloud)
    # 生成词云图片
    image = x.to_image()
    # 展示词云图片
    image.show()
    # 保存词云图片
    wc.to_file('cloud.png')

jieba_()
cloud()

看一下效果:

爬取微博

我们再接着爬取动漫的微博评论,我们选择的爬取目标是雾山五行官博顶置的这条微博的评论数据,如图所示:

在这里插入图片描述

爬取代码实现如下所示:


		
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

# 爬取一页评论内容
def get_one_page(url):
    headers = {
        'User-agent' : 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3880.4 Safari/537.36',
        'Host' : 'weibo.cn',
        'Accept' : 'application/json, text/plain, */*',
        'Accept-Language' : 'zh-CN,zh;q=0.9',
        'Accept-Encoding' : 'gzip, deflate, br',
        'Cookie' : '自己的cookie',
        'DNT' : '1',
        'Connection' : 'keep-alive'
    }
    # 获取网页 html
    response = requests.get(url, headers = headers, verify=False)
    # 爬取成功
    if response.status_code == 200:
        # 返回值为 html 文档,传入到解析函数当中
        return response.text
    return None

# 解析保存评论信息
def save_one_page(html):
    comments = re.findall('<span class="ctt">(.*?)</span>', html)
    for comment in comments[1:]:
        result = re.sub('<.*?>', '', comment)
        if '回复@' not in result:
            with open('wx_comment.txt', 'a+', encoding='utf-8') as fp:
                fp.write(result)

for i in range(50):
    url = 'https://weibo.cn/comment/Je5bqpmCn?uid=6569999648&rl=0&page='+str(i) 
    html = get_one_page(url)
    print('正在爬取第 %d 页评论' % (i+1))
    save_one_page(html)
    time.sleep(3)

对于爬取微博评论不熟悉的小伙伴可以参考:爬取微博评论。

同样的,我们还是将评论生成词云,看一下效果:

爬取豆瓣

最后,我们爬取动漫的豆瓣评论数据,动漫的豆瓣地址为:https://movie.douban.com/subject/30395914/,爬取的实现代码如下:


		
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def spider():
    url = 'https://accounts.douban.com/j/mobile/login/basic'
    headers = {"User-Agent": 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0)'}
    # 评论网址,为了动态翻页,start 后加了格式化数字,短评页面有 20 条数据,每页增加 20 条
    url_comment = 'https://movie.douban.com/subject/30395914/comments?start=%d&limit=20&sort=new_score&status=P'
    data = {
        'ck': '',
        'name': '用户名',
        'password': '密码',
        'remember': 'false',
        'ticket': ''
    }
    session = requests.session()
    session.post(url=url, headers=headers, data=data)
    # 初始化 4 个 list 分别存用户名、评星、时间、评论文字
    users = []
    stars = []
    times = []
    content = []
    # 抓取 500 条,每页 20 条,这也是豆瓣给的上限
    for i in range(0, 500, 20):
        # 获取 HTML
        data = session.get(url_comment % i, headers=headers)
        # 状态码 200 表是成功
        print('第', i, '页', '状态码:',data.status_code)
        # 暂停 0-1 秒时间,防止IP被封
        time.sleep(random.random())
        # 解析 HTML
        selector = etree.HTML(data.text)
        # 用 xpath 获取单页所有评论
        comments = selector.xpath('//div[@class="comment"]')
        # 遍历所有评论,获取详细信息
        for comment in comments:
            # 获取用户名
            user = comment.xpath('.//h3/span[2]/a/text()')[0]
            # 获取评星
            star = comment.xpath('.//h3/span[2]/span[2]/@class')[0][7:8]
            # 获取时间
            date_time = comment.xpath('.//h3/span[2]/span[3]/@title')
            # 有的时间为空,需要判断下
            if len(date_time) != 0:
                date_time = date_time[0]
                date_time = date_time[:10]
            else:
                date_time = None
            # 获取评论文字
            comment_text = comment.xpath('.//p/span/text()')[0].strip()
            # 添加所有信息到列表
            users.append(user)
            stars.append(star)
            times.append(date_time)
            content.append(comment_text)
    # 用字典包装
    comment_dic = {'user': users, 'star': stars, 'time': times, 'comments': content}
    # 转换成 DataFrame 格式
    comment_df = pd.DataFrame(comment_dic)
    # 保存数据
    comment_df.to_csv('db.csv')
    # 将评论单独再保存下来
    comment_df['comments'].to_csv('comment.csv', index=False)

spider()

对于爬取豆瓣评论不熟悉的小伙伴,可以参考:爬取豆瓣评论。

看一下生成的词云效果:

转载自Python小二
 

相关教程