-
Spark SQL 2.4.8 操作 Dataframe的两种方式
一、测试数据
7369,SMITH,CLERK,7902,1980/12/17,800,20
7499,ALLEN,SALESMAN,7698,1981/2/20,1600,300,30
7521,WARD,SALESMAN,7698,1981/2/22,1250,500,30
7566,JONES,MANAGER,7839,1981/4/2,2975,20
7654,MARTIN,SALESMAN,7698,1981/9/28,1250,1400,30
7698,BLAKE,MANAGER,7839,1981/5/1,2850,30
7782,CLARK,MANAGER,7839,1981/6/9,2450,10
7788,SCOTT,ANALYST,7566,1987/4/19,3000,20
7839,KING,PRESIDENT,1981/11/17,5000,10
7844,TURNER,SALESMAN,7698,1981/9/8,1500,0,30
7876,ADAMS,CLERK,7788,1987/5/23,1100,20
7900,JAMES,CLERK,7698,1981/12/3,9500,30
7902,FORD,ANALYST,7566,1981/12/3,3000,20
7934,MILLER,CLERK,7782,1982/1/23,1300,10
二、创建DataFrame
方式一:DSL方式操作
- 实例化SparkContext和SparkSession对象
- 利用StructType类型构建schema,用于定义数据的结构信息
- 通过SparkContext对象读取文件,生成RDD
- 将RDD[String]转换成RDD[Row]
- 通过SparkSession对象创建dataframe
- 完整代码如下:
结果如下:
方式二:SQL方式操作
- 实例化SparkContext和SparkSession对象
- 创建case class Emp样例类,用于定义数据的结构信息
- 通过SparkContext对象读取文件,生成RDD[String]
- 将RDD[String]转换成RDD[Emp]
- 引入spark隐式转换函数(必须引入)
- 将RDD[Emp]转换成DataFrame
- 将DataFrame注册成一张视图或者临时表
- 通过调用SparkSession对象的sql函数,编写sql语句
- 停止资源
- 具体代码如下:
结果如下:
到此这篇关于Spark SQL 2.4.8 操作 Dataframe的两种方式的文章就介绍到这了
原文:https://www.jb51.net/article/225293.htm