VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > 编程开发 > 数据分析 >
  • PyPy 和 CPython 的性能比较测试(2)

 

Element和TextElement元素包换tag和body信息,同时提供了一个方法来渲染它。

下面是我想要的PyPy和CPython比较结果。

/ time

PyPy 2169.90s

CPython 4494.69s

我很对PyPy的结果很吃惊。

计算有趣的类别集合

 

我曾经想要计算一个有趣的类别集合——在我的一个应用背景下,以Computing类别衍生的一些类别为开始进行计算。为此我需要构建一个提供类的类图——子类关系图。

结构类——子类关系图

 

这个任务使用MongoDB作为数据来源,并对结构进行重新分配。算法是:

1
2
3
4
5
for each category.id in redis_categories (it holds*category.id -> category title mapping*) do:
    title= redis_categories.get(category.id)
    parent_categories= mongodb get categoriesfor title
    for each parent_catin parent categories do:
        redis_tree.sadd(parent_cat, title)# add to parent_cat set title

 

抱歉写这样的伪码,但我想这样看起来更加紧凑些。

所以说这个任务仅把数据从一个数据库拷贝到另一个。这里的结果是MongoDB预热完毕后得出的(不预热的话数据会有偏差——这个Python任务只耗费约10%的CPU)。计时如下:

/ time

PyPy 175.11s 用户态 66.11s 系统态 64% CPU

CPython 457.92s 用户态 72.86s 系统态 81% CPU

 

遍历redis_tree(再分配过的树)

 

如果我们有redis_tree数据库,仅剩的问题就是遍历Computing类别下所有可实现的结点了。为避免循环遍历,我们需要记录已访问过的结点。自从我想测试Python的数据库性能,我就用再分配集合列来解决这个问题。

/ time

PyPy 14.79s 用户态 6.22s 系统态 69% CPU 30.322 总计

CPython 44.20s 用户态 13.86s 系统态 71% CPU 1:20.91 总计

说实话,这个任务也需要构建一些tabu list(禁止列表)——来避免进入不需要的类别。但那不是本文的重点。

 

结论

进行的测试仅仅是我最终工作的一个简介。它需要一个知识体系,一个我从抽取维基百科中适当的内容中得到的知识体系。

PyPy相比CPython,在我这个简单的数据库操作中,提高了2-3倍的性能。(我这里没有算上SQL解析器,大约8倍)

多亏了PyPy,我的工作更加愉悦了——我没有改写算法就使Python有了效率,而且PyPy没有像CPython一样把我的CPU弄挂了,以至于一段时间内我没法正常的使用我的笔记本了(看看CPU时间占的百分比吧)。

任务几乎都是数据库操作,而CPython有一些加速的乱七八糟的C语言模块。PyPy不使用这些,但结果却更快!

我的全部工作需要大量的周期,所以我真高兴能用PyPy。


相关教程