VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > 编程开发 > 数据分析 >
  • Python如何进行词频统计?3种方法教给你

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。

以下文章来源于快学Python ,作者小小明

Python爬虫、数据分析、网站开发等案例教程视频免费在线观看

Python如何进行词频统计?3种方法教给你

 

数据准备

复制代码
import jieba

with open("D:/hdfs/novels/天龙八部.txt", encoding="gb18030") as f:
    text = f.read()
with open('D:/hdfs/novels/names.txt', encoding="utf-8") as f:
    for line in f:
        if line.startswith("天龙八部"):
            names = next(f).split()
            break

for word in names:
    jieba.add_word(word)

#  加载停用词
with open("stoplist.txt", encoding="utf-8-sig") as f:
    stop_words = f.read().split()
stop_words.extend(['天龙八部', '
', 'u3000', '目录', '一声', '之中', '只见'])
stop_words = set(stop_words)
all_words = [word for word in cut_word if len(word) > 1 and word not in stop_words]
print(len(all_words), all_words[:20])
复制代码

 

结果:

216435 ['天龙''释名''青衫''磊落''险峰''行玉壁''月华''明马''疾香''幽崖''高远''微步''生家''子弟''家院''计悔情''虎啸''龙吟''换巢''鸾凤']

统计词频排名前N的词

原始字典自写代码统计:

wordcount = {}
for word in all_words:
    wordcount[word] = wordcount.get(word, 0)+1
sorted(wordcount.items(), key=lambda x: x[1], reverse=True)[:10]

 

结果:

Python如何进行词频统计?3种方法教给你

 

使用计数类进行词频统计:

from collections import Counter

wordcount = Counter(all_words)
wordcount.most_common(10)

 

结果:

Python如何进行词频统计?3种方法教给你

 

使用pandas进行词频统计:

pd.Series(all_words).value_counts().head(10)

 

结果:

Python如何进行词频统计?3种方法教给你

 

从上面的结果可以看到使用collections的Counter类来计数会更快一点,而且编码也最简单。

分词过程中直接统计词频

Pandas只能对已经分好的词统计词频,所以这里不再演示。上面的测试表示,Counter直接对列表进行计数比pyhton原生带快,但循环中的表现还未知,下面再继续测试一下。

首先使用原生API直接统计词频并排序:

复制代码
%%time
wordcount = {}
for word in jieba.cut(text):
    if len(word) > 1 and word not in stop_words:
        wordcount[word] = wordcount.get(word, 0)+1
print(sorted(wordcount.items(), key=lambda x: x[1], reverse=True)[:10])
复制代码

 

结果:

[('段誉', 2496), ('说道', 2151), ('虚竹', 1633), ('萧峰', 1301), ('武功', 1095), ('阿紫', 922), ('阿朱', 904), ('乔峰', 900), ('王语嫣', 877), ('慕容复', 871)]
Wall time: 6.04 s

 

 

下面我们使用Counter统计词频并排序:

复制代码
%%time
wordcount = Counter()
for word in jieba.cut(text):
    if len(word) > 1 and word not in stop_words:
        wordcount[word] += 1
print(wordcount.most_common(10))
复制代码

 

结果:

[('段誉', 2496), ('说道', 2151), ('虚竹', 1633), ('萧峰', 1301), ('武功', 1095), ('阿紫', 922), ('阿朱', 904), ('乔峰', 900), ('王语嫣', 877), ('慕容复', 871)]
Wall time: 6.21 s

 

 

可以看到Counter在循环中计数时反而慢了一丁点,但由于Counter类整体性能更佳,编写起来简单,所以一般都用Counter进行统计计数。


相关教程