首页 > temp > python入门教程 >
-
Python爬取热映电影,以『可视化及词云秀』方式带你了解热映电影
今天给大家爬取『大年初一』上映的几部热门数据(评分、时长、类型)以及相关网友评论等数据
对评分、时长、类型进行图表可视化
采用不同词云图案对七部电影『评论』词云秀!!!!
2.数据获取
1.评分数据
网页分析
查看网页源代码,可以见到目标数据在标签<ul class="lists">,通过xpath解析就可以获取。下面直接上代码!
编程实现
headers = {
'Host':'movie.douban.com',
'user-agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3947.100 Safari/537.36',
'cookie':'bid=uVCOdCZRTrM; douban-fav-remind=1; __utmz=30149280.1603808051.2.2.utmcsr=google|utmccn=(organic)|utmcmd=organic|utmctr=(not%20provided); __gads=ID=7ca757265e2366c5-22ded2176ac40059:T=1603808052:RT=1603808052:S=ALNI_MYZsGZJ8XXb1oU4zxzpMzGdK61LFA; dbcl2="165593539:LvLaPIrgug0"; push_doumail_num=0; push_noty_num=0; __utmv=30149280.16559; ll="118288"; __yadk_uid=DnUc7ftXIqYlQ8RY6pYmLuNPqYp5SFzc; _vwo_uuid_v2=D7ED984782737D7813CC0049180E68C43|1b36a9232bbbe34ac958167d5bdb9a27; ct=y; ck=ZbYm; __utmc=30149280; __utmc=223695111; __utma=30149280.1867171825.1603588354.1613363321.1613372112.11; __utmt=1; __utmb=30149280.2.10.1613372112; ap_v=0,6.0; _pk_ref.100001.4cf6=%5B%22%22%2C%22%22%2C1613372123%2C%22https%3A%2F%2Fwww.douban.com%2Fmisc%2Fsorry%3Foriginal-url%3Dhttps%253A%252F%252Fmovie.douban.com%252Fsubject%252F34841067%252F%253Ffrom%253Dplaying_poster%22%5D; _pk_ses.100001.4cf6=*; __utma=223695111.788421403.1612839506.1613363340.1613372123.9; __utmb=223695111.0.10.1613372123; __utmz=223695111.1613372123.9.4.utmcsr=douban.com|utmccn=(referral)|utmcmd=referral|utmcct=/misc/sorry; _pk_id.100001.4cf6=e2e8bde436a03ad7.1612839506.9.1613372127.1613363387.',
}
url="https://movie.douban.com/cinema/nowplaying/zhanjiang/"
r = requests.get(url,headers=headers)
r.encoding = 'utf8'
s = (r.content)
selector = etree.HTML(s)
li_list = selector.xpath('//*[@id="nowplaying"]/div[2]/ul/li')
dict = {}
for item in li_list:
name = item.xpath('.//*[@class="stitle"]/a/@title')[0].replace(" ","").replace("\n","")
rate = item.xpath('.//*[@class="subject-rate"]/text()')[0].replace(" ", "").replace("\n", "")
dict[name] = float(rate)
print("电影="+name)
print("评分="+rate)
print("-------")
电影名和评分数据已经爬取下来,并且降序排序,后面会进行可视化。
2.时长和电影类型
网页分析
在页面源码中,电影时长的网页标签是roperty="v:runtime",电影类型的网页标签对应是property="v:genre"
编程实现
###时长
def getmovietime():
url = "https://movie.douban.com/cinema/nowplaying/zhanjiang/"
r = requests.get(url, headers=headers)
r.encoding = 'utf8'
s = (r.content)
selector = etree.HTML(s)
li_list = selector.xpath('//*[@id="nowplaying"]/div[2]/ul/li')
for item in li_list:
title = item.xpath('.//*[@class="stitle"]/a/@title')[0].replace(" ", "").replace("\n", "")
href = item.xpath('.//*[@class="stitle"]/a/@href')[0].replace(" ", "").replace("\n", "")
r = requests.get(href, headers=headers)
r.encoding = 'utf8'
s = (r.content)
selector = etree.HTML(s)
times = selector.xpath('//*[@property="v:runtime"]/text()')
type = selector.xpath('//*[@property="v:genre"]/text()')
print(title)
print(times)
print(type)
print("-------")
3.评论数据
网页分析
查看网页代码,评论数据的目标标签是<div class="mod-bd" id="comments">(不知道如何分析,可以看上一篇文章[python爬取44130条用户观影数据,分析挖掘用户与电影之间的隐藏信息!],这篇文章也是分析豆瓣电影,里面有详细介绍)。
下面开始爬取这七部电影的评论数据!!!!
编程实现
###评论数据
def getmoviecomment():
url = "https://movie.douban.com/cinema/nowplaying/zhanjiang/"
r = requests.get(url, headers=headers)
r.encoding = 'utf8'
s = (r.content)
selector = etree.HTML(s)
li_list = selector.xpath('//*[@id="nowplaying"]/div[2]/ul/li')
for item in li_list:
title = item.xpath('.//*[@class="stitle"]/a/@title')[0].replace(" ", "").replace("\n", "")
href = item.xpath('.//*[@class="stitle"]/a/@href')[0].replace(" ", "").replace("\n", "").replace("/?from=playing_poster", "")
print("电影=" + title)
print("链接=" + href)
###
with open(title+".txt","a+",encoding='utf-8') as f:
for k in range(0,200,20):
url = href+"/comments?start="+str(k)+"&limit=20&status=P&sort=new_score"
r = requests.get(url, headers=headers)
r.encoding = 'utf8'
s = (r.content)
selector = etree.HTML(s)
li_list = selector.xpath('//*[@class="comment-item "]')
for items in li_list:
text = items.xpath('.//*[@class="short"]/text()')[0]
f.write(str(text)+"\n")
print("-------")
time.sleep(4)
将这些评论数据分别保存到文本文件中,后面将这些评论数据采用不同的图形进行可视化展示!!!!
3.数据可视化
1.评分数据可视化
###画图
font_size = 10 # 字体大小
fig_size = (13, 10) # 图表大小
data = ([datas])
# 更新字体大小
mpl.rcParams['font.size'] = font_size
# 更新图表大小
mpl.rcParams['figure.figsize'] = fig_size
# 设置柱形图宽度
bar_width = 0.35
index = np.arange(len(data[0]))
# 绘制评分
rects1 = plt.bar(index, data[0], bar_width, color='#0072BC')
# X轴标题
plt.xticks(index + bar_width, itemNames)
# Y轴范围
plt.ylim(ymax=10, ymin=0)
# 图表标题
plt.title(u'豆瓣评分')
# 图例显示在图表下方
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.03), fancybox=True, ncol=5)
# 添加数据标签
def add_labels(rects):
for rect in rects:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height, height, ha='center', va='bottom')
# 柱形图边缘用白色填充,纯粹为了美观
rect.set_edgecolor('white')
add_labels(rects1)
# 图表输出到本地
plt.savefig('豆瓣评分.png')
分析
在热映的这七部电影中,《你好,李焕英》评分最高(8.3),《唐人街探案3》最低(5.8)
2.时长和类型可视化
时长数据可视化
#####时长可视化
itemNames.reverse()
datas.reverse()
# 绘图。
fig, ax = plt.subplots()
b = ax.barh(range(len(itemNames)), datas, color='#6699CC')
# 为横向水平的柱图右侧添加数据标签。
for rect in b:
w = rect.get_width()
ax.text(w, rect.get_y() + rect.get_height() / 2, '%d' %
int(w), ha='left', va='center')
# 设置Y轴纵坐标上的刻度线标签。
ax.set_yticks(range(len(itemNames)))
ax.set_yticklabels(itemNames)
plt.title('电影时长(分钟)', loc='center', fontsize='15',
fontweight='bold', color='red')
#plt.show()
plt.savefig("电影时长(分钟)")
分析
1.图中的电影时长均在120分钟左右
2.最长的电影《唐人街探案3》(136分钟),时长最短的是《熊出没·狂野大陆》(99分钟)
电影类型数据可视化
#####2.类型可视化
###从小到大排序
dict = sorted(dict.items(), key=lambda kv: (kv[1], kv[0]))
print(dict)
itemNames = []
datas = []
for i in range(len(dict) - 1, -1, -1):
itemNames.append(dict[i][0])
datas.append(dict[i][1])
x = range(len(itemNames))
plt.plot(x, datas, marker='o', mec='r', mfc='w', label=u'电影类型')
plt.legend() # 让图例生效
plt.xticks(x, itemNames, rotation=45)
plt.margins(0)
plt.subplots_adjust(bottom=0.15)
plt.xlabel(u"类型") # X轴标签
plt.ylabel("数量") # Y轴标签
plt.title("电影类型统计") # 标题
plt.savefig("电影类型统计.png")
分析
将这七部电影的类型进行统计(有的电影属于多个类型,比如'动作', '奇幻', '冒险')。
1.七部电影中其中有四部是属于喜剧。
2.科幻、犯罪、悬疑、冒险均属于其中一部。
3.评论数据词云可视化
使用七种不同的图案进行词云可视化,因此将绘图的代码封装成函数!!!
####词云代码
def jieba_cloud(file_name, icon):
with open(file_name, 'r', encoding='utf8') as f:
text = f.read()
text = text.replace('\n',"").replace("\u3000","").replace(",","").replace("。","")
word_list = jieba.cut(text)
result = " ".join(word_list) # 分词用 隔开
# 制作中文云词
icon_name = ""
if icon == "1":
icon_name ='fas fa-envira'
elif icon == "2":
icon_name = 'fas fa-dragon'
elif icon == "3":
icon_name = 'fas fa-dog'
elif icon == "4":
icon_name = 'fas fa-cat'
elif icon == "5":
icon_name = 'fas fa-dove'
elif icon == "6":
icon_name = 'fab fa-qq'
elif icon == "7":
icon_name = 'fas fa-cannabis'
"""
# icon_name='',#国旗
# icon_name='fas fa-dragon',#翼龙
icon_name='fas fa-dog',#狗
# icon_name='fas fa-cat',#猫
# icon_name='fas fa-dove',#鸽子
# icon_name='fab fa-qq',#qq
"""
picp = file_name.split('.')[0] + '.png'
if icon_name is not None and len(icon_name) > 0:
gen_stylecloud(text=result, icon_name=icon_name, font_path='simsun.ttc', output_name=picp) # 必须加中文字体,否则格式错误
else:
gen_stylecloud(text=result, font_path='simsun.ttc', output_name=picp) # 必须加中文字体,否则格式错误
return picp
开始对这七部电影评论数据进行绘图
###评论数据词云
def commentanalysis():
lists = ['刺杀小说家','你好,李焕英','人潮汹涌','侍神令','唐人街探案3','新神榜:哪吒重生','熊出没·狂野大陆']
for i in range(0,len(lists)):
title =lists[i]+".txt"
jieba_cloud(title , (i+1))
分析
废话不多说了,下面开始『词云秀』!!!!!!!
1.刺杀小说家
2.人潮汹涌
3.熊出没·狂野大陆
4.新神榜:哪吒重生
5.唐人街探案3
6.你好,李焕英
7.侍神令
4.总结
1.爬取豆瓣『大年初一』上映电影数据(评分、时长、类型、评论)
2.对评分、时长、类型进行图表可视化
3.采用不同词云图案对七部电影『评论』词云秀!!!!
出 处:https://www.cnblogs.com/python147/p/14506567.html