当前位置:
首页 > temp > python入门教程 >
-
Python函数中apply、map、applymap的区别
一、总结
- apply —— 应用在 dataFrame 上,用于对 row 或者 column 进行计算
- applymap —— 应用在 dataFrame 上,元素级别的操作
- map —— python 系统自带函数,应用在 series 上, 元素级别的操作
二、实操对比
构建测试数据框:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(0, 10, (4, 3)),
columns=list('abc'),
index=range(4))
df
'''
a b c
0 5 4 8
1 7 5 2
2 1 2 2
3 1 6 2
'''
apply 作用在 dataframe 上的一行或者一列上
#Python学习交流群:531509025
# 默认按列操作 axis=0
# 求每列的最大值、最小值之差
df.apply(lambda x: x.max() - x.min()) # axis=0
# 求每行的最大值、最小值之差
df.apply(lambda x: x.max() - x.min(), axis=1)
applymap 作用在 dataframe 的每一个元素上
# 偶数放大10倍
df.applymap(lambda x: x*10 if x%2 == 0 else x)
map 函数作用在 series 上的每一个元素
# 单独的序列
df['b'].map(lambda x: 1 if x%2 == 0 else 0)
总的来说,要对数据进行应用函数操作时,考虑数据结构是 DataFrame 还是 Series ,再考虑是要按行执行还是按列执行,进行函数的选择。
来源:https://www.cnblogs.com/python960410445/p/15463099.html
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
SQL Server -- 解决存储过程传入参数作为s
关于JS定时器的整理
JS中使用Promise.all控制所有的异步请求都完
js中字符串的方法
import-local执行流程与node模块路径解析流程
检测数据类型的四种方法
js中数组的方法,32种方法
前端操作方法
数据类型
window.localStorage.setItem 和 localStorage.setIte
如何完美解决前端数字计算精度丢失与数