当前位置:
首页 > temp > python入门教程 >
-
Python采集1000多所世界大学排名数据,制作可视化图
前言
QS世界大学排名(QS World University Rankings)是由英国一家国际教育市场咨询公司Quacquarelli Symonds(简称QS)所发表的年度世界大学排名
采集全球大学排名数据(源码已分享,求点赞)
import requests # 发送请求 import re import csv with open('rank.csv', mode='a', encoding='utf-8', newline='') as f: csv_writer = csv.writer(f) csv_writer.writerow(['country', 'rank', 'region', 'score_1', 'score_2', 'score_3', 'score_4', 'score_5', 'score_6', 'total_score', 'stars', 'university', 'year']) def replace(str_): str_ = re.findall('<div class="td-wrap"><div class="td-wrap-in">(.*?)</div></div>', str_)[0] return str_ url = 'https://www.qschina.cn/sites/default/files/qs-rankings-data/cn/2057712_indicators.txt' # 1. 发送请求 response = requests.get(url) # <Response [200]>: 请求成功 # 2. 获取数据 json_data = response.json() # Python 字典 # 3. 解析数据 # 字典 data_list = json_data['data'] for i in data_list: country = i['location'] # 国家/地区 rank = i['overall_rank'] # 排名 region = i['region'] # 大洲 score_1 = replace(i['ind_76']) # 学术声誉 score_2 = replace(i['ind_77']) # 雇主声誉 score_3 = replace(i['ind_36']) # 师生比 score_4 = replace(i['ind_73']) # 教员引用率 score_5 = replace(i['ind_18']) # 国际教师 score_6 = replace(i['ind_14']) # 国际学生 total_score = replace(i['overall']) # 总分 stars = i['stars'] # 星级 uni = i['uni'] # 大学名称 university = re.findall('<div class="td-wrap"><div class="td-wrap-in"><a href=".*?" class="uni-link">(.*?)</a></div></div>', uni)[0] year = "2021" # 年份 print(country, rank, region, score_1, score_2, score_3, score_4, score_5, score_6, total_score, stars, university, year) with open('rank.csv', mode='a', encoding='utf-8', newline='') as f: csv_writer = csv.writer(f) csv_writer.writerow([country, rank, region, score_1, score_2, score_3, score_4, score_5, score_6, total_score, stars, university, year])
可视化展示
导入所需模块
from pyecharts.charts import * from pyecharts import options as opts from pyecharts.commons.utils import JsCode from pyecharts.components import Table import re import pandas as pd
导入数据
df = pd.read_csv('rank.csv') # 香港,澳门与中国大陆地区等在榜单中是分开的记录的,这边都归为china df['loc'] = df['country'] df['country'].replace(['China (Mainland)', 'Hong Kong SAR', 'Taiwan', 'Macau SAR'],'China',inplace=True)
2021年世界大学排名(QS) TOP 100
bar = (Bar() .add_xaxis(university) .add_yaxis('', score, category_gap='30%') .set_global_opts(title_opts=opts.TitleOpts(title="2021年世界大学排名(QS) TOP 100", pos_left="center", title_textstyle_opts=opts.TextStyleOpts(font_size=20)), datazoom_opts=opts.DataZoomOpts(range_start=70, range_end=100, orient='vertical'), visualmap_opts=opts.VisualMapOpts(is_show=False, max_=100, min_=60, dimension=0, range_color=['#00FFFF', '#FF7F50']), legend_opts=opts.LegendOpts(is_show=False), xaxis_opts=opts.AxisOpts(is_show=False, is_scale=True), yaxis_opts=opts.AxisOpts(axistick_opts=opts.AxisTickOpts(is_show=False), axisline_opts=opts.AxisLineOpts(is_show=False), axislabel_opts=opts.LabelOpts(font_size=12))) .set_series_opts(label_opts=opts.LabelOpts(is_show=True, position='right', font_style='italic'), itemstyle_opts={"normal": { "barBorderRadius": [30, 30, 30, 30], 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, } } ).reversal_axis()) grid = ( Grid(init_opts=opts.InitOpts(theme='purple-passion', width='1000px', height='1200px')) .add(bar, grid_opts=opts.GridOpts(pos_right='10%', pos_left='20%')) ) grid.render_notebook()
TOP 500中的中国大学
bar = (Bar() .add_xaxis(university) .add_yaxis('', score, category_gap='30%') .set_global_opts(title_opts=opts.TitleOpts(title="TOP 500中的中国大学", pos_left="center", title_textstyle_opts=opts.TextStyleOpts(font_size=20)), datazoom_opts=opts.DataZoomOpts(range_start=50, range_end=100, orient='vertical'), visualmap_opts=opts.VisualMapOpts(is_show=False, max_=90, min_=20, dimension=0, range_color=['#00FFFF', '#FF7F50']), legend_opts=opts.LegendOpts(is_show=False), xaxis_opts=opts.AxisOpts(is_show=False, is_scale=True), yaxis_opts=opts.AxisOpts(axistick_opts=opts.AxisTickOpts(is_show=False), axisline_opts=opts.AxisLineOpts(is_show=False), axislabel_opts=opts.LabelOpts(font_size=12))) .set_series_opts(label_opts=opts.LabelOpts(is_show=True, position='right', font_style='italic'), itemstyle_opts={"normal": { "barBorderRadius": [30, 30, 30, 30], 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, } } ).reversal_axis()) grid = ( Grid(init_opts=opts.InitOpts(theme='purple-passion', width='1000px', height='1200px')) .add(bar, grid_opts=opts.GridOpts(pos_right='10%', pos_left='20%')) ) grid.render_notebook()
TOP 1000高校按大洲分布
t_data = df[(df.year==2021) & (df['rank']<=1000)] t_data = t_data.groupby(['region'])['university'].count().reset_index() t_data.columns = ['region', 'num'] t_data = t_data.sort_values(by="num" , ascending=False) bar = (Bar(init_opts=opts.InitOpts(theme='purple-passion', width='1000px', height='600px')) .add_xaxis(t_data['region'].tolist()) .add_yaxis('出现次数', t_data['num'].tolist(), category_gap='50%') .set_global_opts(title_opts=opts.TitleOpts(title="TOP 1000高校按大洲分布", pos_left="center", title_textstyle_opts=opts.TextStyleOpts(font_size=20)), visualmap_opts=opts.VisualMapOpts(is_show=False, max_=300, min_=0, dimension=1, range_color=['#00FFFF', '#FF7F50']), legend_opts=opts.LegendOpts(is_show=False), xaxis_opts=opts.AxisOpts(axistick_opts=opts.AxisTickOpts(is_show=False), axisline_opts=opts.AxisLineOpts(is_show=False), axislabel_opts=opts.LabelOpts(font_size=15)), yaxis_opts=opts.AxisOpts(is_show=False)) .set_series_opts(label_opts=opts.LabelOpts(is_show=True, position='top', font_size=15, font_style='italic'), itemstyle_opts={"normal": { "barBorderRadius": [30, 30, 30, 30], 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, } } )) bar.render_notebook()
TOP 1000高校按国家分布
fmt_js = """function (params) {return params.name+': '+Number(params.value[2]);}""" mp = Map() mp.add( "高校数量", data_pair, "world", is_map_symbol_show=False, is_roam=False) mp.set_series_opts(label_opts=opts.LabelOpts(is_show=False), itemstyle_opts={'normal': { 'areaColor': '#191970', 'borderColor': '#1773c3', 'shadowColor': '#1773c3', 'shadowBlur': 20, 'opacity': 0.8 } }) mp.set_global_opts( title_opts=opts.TitleOpts(title="TOP 1000高校按国家分布", pos_left='center', title_textstyle_opts=opts.TextStyleOpts(font_size=18)), legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts(is_show=False, max_=100, is_piecewise=False, dimension=0, range_color=['rgba(255,228,225,0.6)', 'rgba(255,0,0,0.9)', 'rgba(255,0,0,1)']) ) data_pair = [[x, y] for x, y in data_pair if x in country_list] geo = Geo() # 需要先将几个国家的经纬度信息加入到geo中 for k, v in loc.items(): geo.add_coordinate(k, v[0], v[1]) # 这里将geo的地图透明度配置为0 geo.add_schema(maptype="world", is_roam=False, itemstyle_opts={'normal': {'opacity': 0}}) geo.add("", data_pair, symbol_size=1) # 显示标签配置 geo.set_series_opts( label_opts=opts.LabelOpts( is_show=True, position='right', color='white', font_size=12, font_weight='bold', formatter=JsCode(fmt_js)), ) grid = ( Grid(init_opts=opts.InitOpts(theme='chalk', width='1000px', height='600px')) .add(mp, grid_opts=opts.GridOpts(pos_top="12%")) .add(geo, grid_opts=opts.GridOpts(pos_bottom="12%")) ) grid.render_notebook()
大洲-国家分布
c = (Sunburst( init_opts=opts.InitOpts( theme='purple-passion', width="1000px", height="1000px")) .add( "", data_pair=data_pair, highlight_policy="ancestor", radius=[0, "100%"], sort_='null', levels=[ {}, { "r0": "20%", "r": "48%", "itemStyle": {"borderColor": 'rgb(220,220,220)', "borderWidth": 2} }, {"r0": "50%", "r": "80%", "label": {"align": "right"}, "itemStyle": {"borderColor": 'rgb(220,220,220)', "borderWidth": 1}} ], ) .set_global_opts( visualmap_opts=opts.VisualMapOpts(is_show=False, max_=300, min_=0, is_piecewise=False, range_color=['#4285f4', '#34a853', '#fbbc05', '#ea4335', '#ea4335']), title_opts=opts.TitleOpts(title="TOP 1000\n\n大学地理分布", pos_left="center", pos_top="center", title_textstyle_opts=opts.TextStyleOpts(font_style='oblique', font_size=20),)) .set_series_opts(label_opts=opts.LabelOpts(font_size=14, formatter="{b}: {c}")) ) c.render_notebook()
出处:https://www.cnblogs.com/qshhl/p/16469988.html
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
SQL Server -- 解决存储过程传入参数作为s
关于JS定时器的整理
JS中使用Promise.all控制所有的异步请求都完
js中字符串的方法
import-local执行流程与node模块路径解析流程
检测数据类型的四种方法
js中数组的方法,32种方法
前端操作方法
数据类型
window.localStorage.setItem 和 localStorage.setIte
如何完美解决前端数字计算精度丢失与数