首页 > temp > python入门教程 >
-
Python图像处理丨两种实现图像形态学转化运算
摘要:本篇文章主要讲解Python调用OpenCV实现图像形态学转化,包括图像顶帽运算和图像黑帽运算。
本文分享自华为云社区《[Python图像处理] 十.形态学之图像顶帽运算和黑帽运算》,作者: eastmount 。
一. 图像顶帽运算
1.基本原理
图像顶帽(或图像礼帽)运算是原始图像减去图像开运算的结果,得到图像的噪声。如下图所示:
顶帽运算(img) = 原始图像(img) - 开运算(img)

2.函数原型
图像开运算主要使用的函数morphologyEx,它是形态学扩展的一组函数,其参数cv2.MORPH_TOPHAT对应开运算。其原型如下:
dst = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)
参数dst表示处理的结果,src表示原图像,cv2.MORPH_TOPHAT表示顶帽运算,kernel表示卷积核。下图表示5*5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。

卷积如下图所示:

3.代码实现
完整代码如下所示:
#encoding:utf-8 import cv2 import numpy as np #读取图片 src = cv2.imread('test01.png', cv2.IMREAD_UNCHANGED) #设置卷积核 kernel = np.ones((5,5), np.uint8) #图像顶帽运算 result = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel) #显示图像 cv2.imshow("src", src) cv2.imshow("result", result) #等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
输出结果如下图所示,可以看到外部噪声被提取出来。

如果想获取更多的细节,可以将卷积设置为10*10,如下图所示:
kernel = np.ones((10,10), np.uint8)
result = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)

二. 图像黑帽运算
1.基本原理
图像黑帽运算是图像闭运算操作减去原始图像的结果,得到图像内部的小孔,或者前景色中的小黑点。如下图所示:
黑帽运算(img) = 闭运算图像(img) - 原始图像(img)

2.函数原型
图像开运算主要使用的函数morphologyEx,它是形态学扩展的一组函数,其参数cv2.MORPH_BLACKHAT对应开运算。其原型如下:
dst = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)
参数dst表示处理的结果,src表示原图像,cv2.MORPH_BLACKHAT表示黑帽运算,kernel表示卷积核。下图表示5*5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。

3.代码实现
完整代码如下所示:
#encoding:utf-8 import cv2 import numpy as np #读取图片 src = cv2.imread('test02.png', cv2.IMREAD_UNCHANGED) #设置卷积核 kernel = np.ones((5,5), np.uint8) #图像黑帽运算 result = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel) #显示图像 cv2.imshow("src", src) cv2.imshow("result", result) #等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
输出结果如下图所示,可以看到图像内部黑点被提取出来。

但内部比较大的四个黑点没有被提取,如果想获取更多的细节,可以将卷积设置为10*10,如下图所示:
kernel = np.ones((10,10), np.uint8)
result = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)
