VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > temp > python入门教程 >
  • 【爬虫+数据分析+数据可视化】python数据分析全流程《2021胡润百富榜》榜单数据

一、爬虫

1.1 爬取目标

本次爬取的目标是,2021年胡润百富榜的榜单数据:胡润百富 - 榜单

页面上能看到的信息有:
排名、财富值、排名变化、个人信息(姓名、性别、年龄)、企业信息(企业名称、所属行业)
页面结构很整齐,数据也很完整,非常适合爬虫和数据分析使用。

1.2 分析页面

老规矩,打开Chrome浏览器,按F12进入开发者模式,依次点击Network->Fetch/XHR,准备好捕获ajax请求。
重新刷新一下页面,发现一条请求:

在预览界面,看到一共20条(0~19)返回数据,正好对应页面上的20个富豪信息。
所以,后面编写爬虫代码,针对这个地址发送请求就可以了。
另外,关于翻页,我的个人习惯是,选择每页显示最多的数据量,这样能保证少翻页几次,少发送几次请求,防止被对端服务器反爬。
所以,每页选择200条数据:

再刷新一下页面,进行几次翻页,观察请求地址的变化规律:

以翻到第3页为例,url中的offset(偏移量)为400,limit(每页的条数)为200,所以,可得出规律:

offset = (page - 1) * 200
limit = 200

下面开始编写爬虫代码。

1.3 爬虫代码

首先,导入需要用到的库:

import requests  # 发送请求
import pandas as pd  # 存入excel数据
from time import sleep  # 等待间隔,防止反爬
import random  # 随机等待

根据1.2章节分析得出的结论,编写逻辑代码,向页面发送请求:

# 循环请求1-15页
for page in range(1, 16):
	# 胡润百富榜地址
	sleep_seconds = random.uniform(1, 2)
	print('开始等待{}秒'.format(sleep_seconds))
	sleep(sleep_seconds)
	print('开始爬取第{}页'.format(page))
	offset = (page - 1) * 200
	url = 'https://www.hurun.net/zh-CN/Rank/HsRankDetailsList?num=YUBAO34E&search=&offset={}&limit=200'.format(offset)
	# 构造请求头
	headers = {
		'User-Agent': 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Mobile Safari/537.36',
		'accept': 'application/json, text/javascript, */*; q=0.01',
		'accept-language': 'zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7',
		'accept-encoding': 'gzip, deflate, br',
		'content-type': 'application/json',
		'referer': 'https://www.hurun.net/zh-CN/Rank/HsRankDetails?pagetype=rich'
	}
	# 发送请求
	r = requests.get(url, headers=headers)

用json格式解析返回的请求数据:(一行代码即可完成接收)

json_data = r.json()

由于解析的字段较多,这里不再赘述详细过程,字段信息包含:

Fullname_Cn_list = []  # 全名_中文
Fullname_En_list = []  # 全名_英文
Age_list = []  # 年龄
BirthPlace_Cn_list = []  # 出生地_中文
BirthPlace_En_list = []  # 出生地_英文
Gender_list = []  # 性别
Photo_list = []  # 照片
ComName_Cn_list = []  # 公司名称_中文
ComName_En_list = []  # 公司名称_英文
ComHeadquarters_Cn_list = []  # 公司总部地_中文
ComHeadquarters_En_list = []  # 公司总部地_英文
Industry_Cn_list = []  # 所在行业_中文
Industry_En_list = []  # 所在行业_英文
Ranking_list = []  # 排名
Ranking_Change_list = []  # 排名变化
Relations_list = []  # 组织结构
Wealth_list = []  # 财富值_人民币_亿
Wealth_Change_list = []  # 财富值变化
Wealth_USD_list = []  # 财富值_美元
Year_list = []  # 年份

最后,依然采用我最习惯的保存数据的方法,先拼装DataFrame数据:

df = pd.DataFrame(  # 拼装爬取到的数据为DataFrame
		{
			'排名': Ranking_list,
			'排名变化': Ranking_Change_list,
			'全名_中文': Fullname_Cn_list,
			'全名_英文': Fullname_En_list,
			'年龄': Age_list,
			'出生地_中文': BirthPlace_Cn_list,
			'出生地_英文': BirthPlace_En_list,
			'性别': Gender_list,
			'照片': Photo_list,
			'公司名称_中文': ComName_Cn_list,
			'公司名称_英文': ComName_En_list,
			'公司总部地_中文': ComHeadquarters_Cn_list,
			'公司总部地_英文': ComHeadquarters_En_list,
			'所在行业_中文': Industry_Cn_list,
			'所在行业_英文': Industry_En_list,
			'组织结构': Relations_list,
			'财富值_人民币_亿': Wealth_list,
			'财富值变化': Wealth_Change_list,
			'财富值_美元': Wealth_USD_list,
			'年份': Year_list
		}
				)

再用pandas的to_csv方法保存:

# 保存结果数据
df.to_csv('2021胡润百富榜.csv', mode='a+', index=False, header=header, encoding='utf_8_sig')

注意,加上这个编码格式选项(utf_8_sig),否则产生乱码哦。
爬虫开发完成,下面展示结果数据。

1.4 结果数据

看一下榜单上TOP20的数据吧:

数据一共2916条,19个字段信息,含:

排名、排名变化、全名_中文、全名_英文、年龄、出生地_中文、出生地_英文、性别、公司名称_中文、公司名称_英文、公司总部地_中文、公司总部地_英文、所在行业_中文、所在行业_英文、组织结构、财富值_人民币_亿、财富值变化、 财富值_美元、年份。

数据信息还是很丰富的,希望能够挖掘出一些有价值的结论!

二、数据分析

2.1 导入库

首先,导入用于数据分析的库:

import pandas as pd  # 读取csv文件
import matplotlib.pyplot as plt  # 画图
from wordcloud import WordCloud  # 词云图

增加一个配置项,用于解决matplotlib中文乱码的问题:

# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题

读取csv数据:

# 读取csv数据
df = pd.read_csv('2021胡润百富榜.csv')

2.2 数据概况

查看数据形状:

查看前3名富豪:

查看最后3名富豪:

描述性统计:

从描述性统计,可以得出结论:
从最大值3900亿、最小值20亿、方差242来看,分布很零散,各位富豪掌握的财富差距很大,马太效应明显。

2.3 可视化分析

2.3.1 财富分布

代码:

df_Wealth = df['财富值_人民币_亿']
# 绘图
df_Wealth.plot.hist(figsize=(18, 6), grid=True, title='财富分布-直方图')
# 保存图片
plt.savefig('财富分布-直方图.png')

可视化图:

结论:大部分的富豪的财富集中在20亿~400亿之间,个别顶级富豪的财富在3000亿以上。

2.3.2 年龄分布

代码:

# 剔除未知
df_Age = df[df.年龄 != '未知']
# 数据切割,8个分段
df_Age_cut = pd.cut(df_Age.年龄.astype(float), bins=[20, 30, 40, 50, 60, 70, 80, 90, 100])
# 画柱形图
df_Age_cut.value_counts().plot.bar(figsize=(16, 6), title='年龄分布-柱形图')
# 保存图片
plt.savefig('年龄分布-柱形图.png')

可视化图:

结论:大部分富豪的年龄在50-60岁,其次是60-70和40-50岁。极少数富豪在20-30岁(年轻有为


相关教程