-
美团一面:两个有序的数组,如何高效合并成一个有序数组?
在说这个题目之前先来说说一个排序算法 “归并算法”
归并算法采取思想是分治思想,分治思想简单说就是分而治之,将一个大问题分解为小问题,将小问题解答后合并为大问题的答案。
乍一看跟递归思想很像,确实如此,分治思想一般就是使用递归来实现的。但是需要注意的是:递归是代码实现的方式,分治属于理论。
接下来看一副图理解下:
说完它的思想:我们再来分析下时间复杂度。归并算法采用的是完全二叉树的形式。所以可以由完全二叉树的深度可以得知,整个归并排序需要进行log2n次。
然后每一次需要消耗O{n}时间。所以总的时间复杂度为o{nlog2n}。归并排序是一种比较占用内存,但是效率高且稳定的算法
贴上代码:
static void Main(string[] args) {
int[] arr = new int[] { 14,12,15,13,11,16 ,10};
int[] newArr = Sort(arr, new int[7], 0, arr.Length - 1);
for (int i = 0; i < newArr.Length - 1; i++)
{
Console.WriteLine(newArr[i]);
}
Console.ReadKey();
}
public static int[] Sort(int[] arr, int[] result, int start, int end)
{
if (start >= end)
return null;
int len = end - start, mid = (len >> 1) + start;
int start1 = start, end1 = mid;
int start2 = mid + 1, end2 = end;
Sort(arr, result, start1, end1);
Sort(arr, result, start2, end2);
int k = start;
//进行比较。注意这里++是后执行的,先取出来数组中的值然后++
while (start1 <= end1 && start2 <= end2)
result[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
//将每个分组剩余的进行复制
while (start1 <= end1)
result[k++] = arr[start1++];
//将每个分组剩余的进行复制
while (start2 <= end2)
result[k++] = arr[start2++];
for (k = start; k <= end; k++)
arr[k] = result[k];
return result;
}
说完了归并算法回到题目上来 首先分析下 题目给定的是两个已经排好序的数组合并,关键字“合并”,“两个”,正好符合我们的归并算法,并且已经分类好了,只需要去合并就可以了。
来看下几张图。
蓝色的箭头表示最终选择的位置,而红色的箭头表示两个数组当前要比较的元素,比如当前是2与1比较,1比2小,所以1放到蓝色的箭头中,蓝色的箭头后移,1的箭头后移。
然后2与4比较,2比4小那么2到蓝色的箭头中,蓝色箭头后移,2后移,继续比较.......
归并思路就是这样了,最后唯一需要注意的是那个先比较完的话,那么剩下的直接不需要比较,把后面的直接移上去就可以了,这个需要提前判定一下。
贴上代码:
static void Main(string[] args) {
int[] arr1 = new int[] { 2, 3, 6, 8 };
int[] arr2 = new int[] { 1, 4, 5, 7 };
int[] newArr = Sort(arr1, arr2);
for (int i = 0; i < newArr.Length - 1; i++)
{
Console.WriteLine(newArr[i]);
}
Console.ReadKey();
}
public static int[] Sort(int[] arr1,int[] arr2)
{
int[] newArr = new int[arr1.Length + arr2.Length];
int i = 0, j = 0, k = 0;
while (i < arr1.Length && j < arr2.Length)
{
if (arr1[i] < arr2[j])
{
newArr[k] = arr1[i];
i++;
k++;
}
else
{
newArr[k] = arr2[j];
j++;
k++;
}
}
while (i < arr1.Length)
newArr[k++] = arr1[i++];
while (j < arr2.Length)
newArr[j++] = arr2[j++];
return newArr;
}
最后感谢一下大佬提供的思路:https://blog.csdn.net/k_koris/article/details/80508543
原文链接:https://blog.csdn.net/weixin_40097554/article/details/108656165/
版权声明:本文为CSDN博主「貂蝉要睡觉」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。