VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > 编程开发 > Java教程 >
  • Java 基础 一文搞懂泛型

本文将从以下四个方面来系统的讲解一下泛型,基本上涵盖了泛型的主体内容。

  1. 什么是泛型?
  2. 为什么要使用泛型?
  3. 如何使用泛型?
  4. 泛型的特性

1. 什么是泛型?

泛型的英文是Generics,是指在定义方法、接口或类的时候,不预先指定具体的类型,而使用的时候再指定一个类型的一个特性。

写过Java代码的同学应该知道,我们在定义方法、接口或类的时候,都要指定一个具体的类型。比如:

public class test {
    private String name;

    public void setName(String name) {
        this.name = name;
    }

    public String getName() {
        return name;
    }
}

上面代码就定义了字段name的类型为String,方法getName的返回类型为String,这种写法就是预先指定了具体的类型。而泛型就是不预先指定具体的类型。

Java中有一个类型叫ArrayList,相当于一个可变长度的数组。在ArrayList类型中就没有预先指定具体的类型。因为数组可以存放任何类型的数据,如果要预先指定一个数组类型的话,那要满足大家对各种类型的需求,就要写很多类型的ArrayList,要为每个class写一个单独的ArrayList,比如:

  • IntegerArrayList

  • StringArrayList

  • FloatArrayList

  • LongArrayList

  • ...

这显然不太现实,因为class有上千种,还有自己定义的class。那么在ArrayList中预先指定具体的类型就无法满足需求。这个时候就需要使用泛型,即不指定存储数据的具体的类型,这个类型由使用者决定。

为了解决类型的问题,我们必须把ArrayList变成一种模板:ArrayList<T>,代码如下:

public class ArrayList<T> {
    private T[] array;
    private int size;
    public void add(T e) {...}
    public void remove(int index) {...}
    public T get(int index) {...}
}

T可以是任何class,这样一来,我们就实现了:编写一次模版,可以创建任意类型的ArrayList

// 创建可以存储String的ArrayList:
ArrayList<String> strList = new ArrayList<String>();
// 创建可以存储Float的ArrayList:
ArrayList<Float> floatList = new ArrayList<Float>();
// 创建可以存储Person的ArrayList:
ArrayList<Person> personList = new ArrayList<Person>();

因此,泛型也可以说是定义一种模板,例如ArrayList<T>,然后在代码中为用到的类创建对应的ArrayList<类型>。(泛型是指在定义方法、接口或类的时候,不预先指定具体的类型,而使用的时候再指定一个类型的一个特性。)后面这种定义可能会更好理解其本质。

更为官方的定义是:泛型指“参数化类型”。泛型的本质是为了参数化类型(将类型参数化传递)(在不创建新的类型的情况下,通过泛型指定的不同类型来控制形参具体限制的类型)。也就是说在泛型使用过程中,操作的数据类型被指定为一个参数,这种参数类型,可以在类、接口和方法中,分别被称为泛型类,泛型接口,泛型方法

2. 为什么要使用泛型?

参考自:Oracle 泛型文档

与非泛型的代码相比,使用泛型的代码具有很多优点:

  1. 在编译时会有更强的类型检查

    Java编译器对泛型代码进行强类型检查,如果代码违反类型安全,则会发出错误。修复编译时的错误比修复运行时的错误会更加简单,运行时的错误会更难找到。

    说人话就是,使用泛型时,编译器会对输入的类型的进行检查,类型与声明的类型不一致时就会报错。而不使用泛型,编译器可能就检测不到这个类型错误,就会在运行的时候报错。

  2. 消除类型转换

    下面的代码是没有使用泛型的情况,这时候需要对类型进行转换

    List list = new ArrayList();
    list.add("hello");
    String s = (String) list.get(0);
    

    使用泛型,就不需要对类型进行转换

    List<String> list = new ArrayList<String>();
    list.add("hello");
    String s = list.get(0);   // no cast
    
  3. 可以实现更通用的算法

    通过使用泛型,程序员可以对不同类型的集合进行自定义操作以实现通用算法,并且代码类型会更加安全、代码更易读

3. 如何使用泛型?

还是以ArrayList为例,如果不定义泛型类型时,泛型类型此时就是Object

// 编译器警告:
List list = new ArrayList();
list.add("Hello");
list.add("World");
String first = (String) list.get(0);
String second = (String) list.get(1);

此时,只能把<T>当作Object使用,没有发挥泛型的优势。

当我们定义泛型类型<String>后,List<T>的泛型接口变为强类型List<String>

// 无编译器警告:
List<String> list = new ArrayList<String>();
list.add("Hello");
list.add("World");
// 无强制转型:
String first = list.get(0);
String second = list.get(1);

编译器看到泛型类型List<String>就可以自动推断出后面的ArrayList<T>的泛型类型必须是ArrayList<String>,因此,可以把代码简写为:

// 可以省略后面的Number,编译器可以自动推断泛型类型:
List<String> list = new ArrayList<>();

3.1 泛型类

泛型类的语法形式:

class name<T1, T2, ..., Tn> { /* ... */ }

泛型类的声明和非泛型类的声明类似,除了在类名后面添加了类型参数声明部分。由尖括号(<>)分隔的类型参数部分跟在类名后面。它指定类型参数(也称为类型变量)T1,T2,...和 Tn。

一般将泛型中的类名称为原型,而将 <> 指定的参数称为类型参数

在泛型出现之前,一个类要想处理所有类型的数据,只能使用Object做数据转换。实例如下:

public class Info {
	private Object value;

	public Object getValue() {
		return value;
	}

	public void setValue(Object value) {
		this.value = value;
	}
}

使用泛型之后,其实就是将Object换成T,并声明<T>

public class Info<T> {
	private T value;
    
    public T getValue() {
        return value;
    }
    
    public void setValue(T value) {
        this.value = value;
    }
}

在上面的例子中,在初始化一个泛型类时,使用 <> 指定了内部具体类型,在编译时就会根据这个类型做强类型检查。

实际上,不使用 <> 指定内部具体类型,语法上也是支持的(不推荐这么做),这样的调用就失去泛型类型的优势。如下所示:

public static void main(String[] args) {
    Info info = new Info();
    info.setValue(10);
    System.out.println(info.getValue());
    info.setValue("abc");
    System.out.println(info.getValue());
}

上面是单个类型参数的泛型类

下面我们看一下多个类型参数的泛型类该如何编写。

例如,我们定义Pair不总是存储两个类型一样的对象,就可以使用类型<T, K>

public class Pair<T, K> {
    private T first;
    private K last;
    
    public Pair(T first, K last) {
        this.first = first;
        this.last = last;
    }
    
    public T getFirst() { 
    	return first;
    }
    
    public K getLast() { 
    	return last;
    }
}

使用的时候,需要指出两种类型:

Pair<String, Integer> p = new Pair<>("test", 123);

Java标准库的Map<K, V>就是使用两种泛型类型的例子。它对Key使用一种类型,对Value使用另一种类型。

小结

编写泛型时,需要定义泛型类型<T>

泛型可以同时定义多种类型,例如Map<K, V>

3.2 泛型接口

接口也可以声明泛型。

泛型接口语法形式:

public interface Content<T> {
    T text();
}

泛型接口有两种实现方式:

  • 实现接口的子类明确声明泛型类型

    预先声明继承的具体类型的接口类,下面就是继承的Integer类型的接口类。

    public class IntContent implements Content<Integer> {
        private int text;
    
        public IntContent(int text) {
            this.text = text;
        }
    
        @Override
        public Integer text() { 
            return text; 
        }
    }
    

    因为子类并没有泛型类型,所以正常使用就行。

    InContent ic = new IntContent(10);
    
  • 实现接口的子类不明确声明泛型类型

    public class GenericsContent<T> implements Content<T> {
        private T text;
    
        public GenericsContent(T text) {
            this.text = text;
        }
    
        @Override
        public T text() { 
            return text; 
        }
    }
    

    此时子类也使用了泛型类型,就需要指定具体类型

    Content<String> gc = new GenericsContent<>("ABC");
    

3.3 泛型方法

泛型方法是引入其自己的类型参数的方法。泛型方法可以是普通方法、静态方法以及构造方法。

泛型方法语法形式如下:

public <T> T func(T obj) {}

注意:是否拥有泛型方法,与其所在的类是否是泛型没有关系。

泛型方法的语法包括一个类型参数列表,在尖括号内,它出现在方法的返回类型之前。对于静态泛型方法,类型参数部分必须出现在方法的返回类型之前。类型参数能被用来声明返回值类型,并且能作为泛型方法得到的实际类型参数的占位符。

使用泛型方法的时候,通常不必指明类型参数,因为编译器会为我们找出具体的类型。这称为类型参数推断(type argument inference)。类型推断只对赋值操作有效,其他时候并不起作用。如果将一个泛型方法调用的结果作为参数,传递给另一个方法,这时编译器并不会执行推断。

编译器会认为:调用泛型方法后,其返回值被赋给一个 Object 类型的变量。

public class GenericsMethodDemo01 {
    public static <T> void printClass(T obj) {
        System.out.println(obj.getClass().toString());
    }

    public static void main(String[] args) {
        printClass("abc");
        printClass(10);
    }
}
// Output:
// class java.lang.String
// class java.lang.Integer

泛型方法中也可以使用可变参数列表

public class GenericVarargsMethodDemo {
    public static <T> List<T> makeList(T... args) {
        List<T> result = new ArrayList<T>();
        Collections.addAll(result, args);
        return result;
    }

    public static void main(String[] args) {
        List<String> ls = makeList("A");
        System.out.println(ls);
        ls = makeList("A", "B", "C");
        System.out.println(ls);
    }
}
// Output:
// [A]
// [A, B, C]

4. 泛型的特性

4.1 类型擦除(Type Erasure)

Java 语言引入泛型是为了在编译时提供更严格的类型检查,并支持泛型编程。不同于 C++ 的模板机制,Java 泛型是使用类型擦除来实现的,使用泛型时,任何具体的类型信息都被擦除了

那么,类型擦除做了什么呢?它做了以下工作:

  • 把泛型中的所有类型参数替换为 Object,如果指定类型边界,则使用类型边界来替换。因此,生成的字节码仅包含普通的类,接口和方法。
  • 擦除出现的类型声明,即去掉 <> 的内容。比如 T get() 方法声明就变成了 Object get() ;List<String> 就变成了 List。如有必要,插入类型转换以保持类型安全。
  • 生成桥接方法以保留扩展泛型类型中的多态性。类型擦除确保不为参数化类型创建新类;因此,泛型不会产生运行时开销。

Java 泛型的实现方式不太优雅,但这是因为泛型是在 JDK5 时引入的,为了兼容老代码,必须在设计上做一定的折中。

简单来说类型擦除是指,虚拟机对泛型其实一无所知,所有的工作都是编译器做的。

例如,我们编写了一个泛型类Pair<T>,这是编译器看到的代码:

public class Pair<T> {
    private T first;
    private T last;
    public Pair(T first, T last) {
        this.first = first;
        this.last = last;
    }
    public T getFirst() {
        return first;
    }
    public T getLast() {
        return last;
    }
}

而虚拟机根本不知道泛型。这是虚拟机执行的代码:

public class Pair {
    private Object first;
    private Object last;
    public Pair(Object first, Object last) {
        this.first = first;
        this.last = last;
    }
    public Object getFirst() {
        return first;
    }
    public Object getLast() {
        return last;
    }
}

因此,Java使用类型擦拭实现泛型,导致了:

  • 编译器把类型<T>视为Object
  • 编译器根据<T>实现安全的强制转型。

因此,Java使用擦拭法实现泛型,导致了:

  • 编译器把类型<T>视为Object
  • 编译器根据<T>实现安全的强制转型。

使用泛型的时候,我们编写的代码也是编译器看到的代码:

Pair<String> p = new Pair<>("Hello", "world");
String first = p.getFirst();
String last = p.getLast();

而虚拟机执行的代码并没有泛型:

Pair p = new Pair("Hello", "world");
String first = (String) p.getFirst();
String last = (String) p.getLast();

所以,Java的泛型是由编译器在编译时实行的,编译器内部永远把所有类型T视为Object处理,但是,在需要转型的时候,编译器会根据T的类型自动为我们实行安全地强制转型。

泛型的局限

了解了Java泛型的实现方式——类型擦除,我们就知道了Java泛型的局限:

局限一<T>不能是基本类型,例如int,因为实际类型是ObjectObject类型无法持有基本类型:

Pair<int> p = new Pair<>(1, 2); // compile error!

局限二:无法取得带泛型的Class。观察以下代码:

public class test {
    public static void main(String[] args) {
        List<Object> list1 = new ArrayList<Object>();
        List<String> list2 = new ArrayList<String>();
        System.out.println(list1.getClass());
        System.out.println(list2.getClass());
    }
}
// Output:
// class java.util.ArrayList
// class java.util.ArrayList

因为TObject,我们对ArrayList<Object>ArrayList<String>类型获取Class时,获取到的是同一个Class,也就是ArrayList类的Class

换句话说,所有泛型实例,无论T的类型是什么,getClass()返回同一个Class实例,因为编译后它们全部都是ArrayList<Object>

局限三:无法判断带泛型的类型:

List<Integer> p = new ArrayList<>();
// Compile error:
if (p instanceof List<String>) {
}

原因和前面一样,并不存在List<String>.class,而是只有唯一的List.class

泛型和继承

正是由于泛型时基于类型擦除实现的,所以,泛型类型无法向上转型

向上转型是指用子类实例去初始化父类,这是面向对象中多态的重要表现。

20210429172624

Integer 继承了 ObjectArrayList 继承了 List;但是 List<Interger> 却并非继承了 List<Object>

这是因为,泛型类并没有自己独有的 Class 类对象。比如:并不存在 List<Object>.class 或是 List<Interger>.class,Java 编译器会将二者都视为 List.class

4.2 上边界

在使用泛型的时候,我们还可以为传入的泛型类型实参进行上下边界的限制,如:类型实参只准传入某种类型的父类或某种类型的子类

extend通配符

为泛型添加上边界,即传入的类型实参必须是指定类型的子类型

// 可以限制传入方法的参数的类型
<? extends xxx>
// 也可以限制T的类型
<T extends XXX>
// 类型边界可以设置多个,语法形式如下:
<T extends B1 & B2 & B3>

注意:extends 关键字后面的第一个类型参数可以是类或接口,其他类型参数只能是接口。

<? extends xxx>

举个例子:

public class test {  
    public static void main(String[] args) {
        Pair<Integer> p = new Pair<>(123, 456);
        int n = add(p);
        System.out.println(n);
    }

    static int add(Pair<? extends Number> p) {
        Number first = p.getFirst();
        Number last = p.getLast();
        return first.intValue() + last.intValue();
    }
}

class Pair<T> {
    private T first;
    private T last;
    public Pair(T first, T last) {
        this.first = first;
        this.last = last;
    }
    public T getFirst() {
        return first;
    }
    public T getLast() {
        return last;
    }
}

通过使用<? extends Number>,我们可以传入Number类型的子类类型的数组。就可以执行数值类型的加法。

这种使用<? extends Number>的泛型定义称之为上界通配符(Upper Bounds Wildcards),即把泛型类型T的上界限定在Number了。除了可以传入Pair<Integer>类型,我们还可以传入Pair<Double>类型,Pair<BigDecimal>类型等等,因为DoubleBigDecimal都是Number的子类。

如果我们考察对Pair<? extends Number>类型调用getFirst()方法,实际的方法签名变成了:

<? extends Number> getFirst();

接下来,我们再来考察一下Pair<T>set方法:

public class test {  
    public static void main(String[] args) {
        Pair<Integer> p = new Pair<>(123, 456);
        int n = add(p);
        System.out.println(n);
    }

    static int add(Pair<? extends Number> p) {
        Number first = p.getFirst();
        Number last = p.getLast();
        p.setFirst(new Integer(first.intValue() + 100));
        p.setLast(new Integer(last.intValue() + 100));
        return p.getFirst().intValue() + p.getFirst().intValue();
    }
}

class Pair<T> {
    private T first;
    private T last;
    public Pair(T first, T last) {
        this.first = first;
        this.last = last;
    }
    public T getFirst() {
        return first;
    }
    public T getLast() {
        return last;
    }
    public void setFirst(T first) {
        this.first = first;
    }
    public void setLast(T last) {
        this.last = last;
    }
}

// 会得到一个编译错误
// The method setFirst(capture#3-of ? extends Number) in the type Pair<capture#3-of ? extends Number> is not applicable for the arguments (int)Java(67108979)

编译错误的原因在于,如果一开始我们传入的pPair<Double>,显然它满足参数定义Pair<? extends Number>,然而,Pair<Double>setFirst()显然无法接受Integer类型。

这就是<? extends Number>通配符的一个重要限制:方法参数签名setFirst(? extends Number)无法传递任何Number的子类型给setFirst(? extends Number)

这里唯一的例外是可以给方法参数传入null

p.setFirst(null); // ok, 但是后面会抛出NullPointerException
p.getFirst().intValue(); // NullPointerException

使用extends限定T类型

在定义泛型类型Pair<T>的时候,也可以使用extends通配符来限定T的类型:

public class Pair<T extends Number> { ... }

现在,我们只能定义:

Pair<Number> p1 = null;
Pair<Integer> p2 = new Pair<>(1, 2);
Pair<Double> p3 = null;

因为NumberIntegerDouble都符合<T extends Number>

Number类型将无法通过编译:

Pair<String> p1 = null; // compile error!
Pair<Object> p2 = null; // compile error!

因为StringObject都不符合<T extends Number>,因为它们不是Number类型或Number的子类。

小结

使用类似<? extends Number>通配符作为方法参数时表示:

  • 方法内部可以调用获取Number引用的方法,例如:Number n = obj.getFirst();
  • 方法内部无法调用传入Number引用的方法(null除外),例如:obj.setFirst(Number n);

即一句话总结:使用extends通配符表示可以读,不能写。

使用类似<T extends Number>定义泛型类时表示:

  • 泛型类型限定为Number以及Number的子类。

4.3 下边界

super 下界通配符将未知类型限制为该类型的特定类型或超类类型。

extends通配符相反,这次,我们希望接受Pair<Integer>类型,以及Pair<Number>Pair<Object>,因为NumberObjectInteger的父类,setFirst(Number)setFirst(Object)实际上允许接受Integer类型。

我们使用super通配符来改写这个方法:

void set(Pair<? super Integer> p, Integer first, Integer last) {
    p.setFirst(first);
    p.setLast(last);
}

注意到Pair<? super Integer>表示,方法参数接受所有泛型类型为IntegerInteger父类的Pair类型。

这里注意到我们无法使用Integer类型来接收getFirst()的返回值,即下面的语句将无法通过编译:

Integer x = p.getFirst();

因为如果传入的实际类型是Pair<Number>,编译器无法将Number类型转型为Integer

因此,使用<? super Integer>通配符表示:

  • 允许调用set(? super Integer)方法传入Integer的引用;
  • 不允许调用get()方法获得Integer的引用。

唯一例外是可以获取Object的引用:Object o = p.getFirst()

换句话说,使用<? super Integer>通配符作为方法参数,表示方法内部代码对于参数只能写,不能读。

对比extends和super通配符

我们再回顾一下extends通配符。作为方法参数,<? extends T>类型和<? super T>类型的区别在于:

  • <? extends T>允许调用读方法T get()获取T的引用,但不允许调用写方法set(T)传入T的引用(传入null除外);
  • <? super T>允许调用写方法set(T)传入T的引用,但不允许调用读方法T get()获取T的引用(获取Object除外)。

一个是允许读不允许写,另一个是允许写不允许读。

4.4 无限定通配符

我们已经讨论了<? extends T><? super T>作为方法参数的作用。实际上,Java的泛型还允许使用无限定通配符(Unbounded Wildcard Type),即只定义一个?

void sample(Pair<?> p) {
}

因为<?>通配符既没有extends,也没有super,因此:

  • 不允许调用set(T)方法并传入引用(null除外);
  • 不允许调用T get()方法并获取T引用(只能获取Object引用)。

无界通配符有两种应用场景:

  • 可以使用 Object 类中提供的功能来实现的方法。
  • 使用不依赖于类型参数的泛型类中的方法。

语法形式:<?>

public class GenericsUnboundedWildcardDemo {
    public static void printList(List<?> list) {
        for (Object elem : list) {
            System.out.print(elem + " ");
        }
        System.out.println();
    }

    public static void main(String[] args) {
        List<Integer> li = Arrays.asList(1, 2, 3);
        List<String> ls = Arrays.asList("one", "two", "three");
        printList(li);
        printList(ls);
    }
}
// Output:
// 1 2 3
// one two three

小结

使用类似<? super Integer>通配符作为方法参数时表示:

  • 方法内部可以调用传入Integer引用的方法,例如:obj.setFirst(Integer n);
  • 方法内部无法调用获取Integer引用的方法(Object除外),例如:Integer n = obj.getFirst();

即使用super通配符表示只能写不能读。

无限定通配符<?>很少使用,可以用<T>替换,同时它是所有<T>类型的超类。

4.5 泛型命名

泛型一些约定俗成的命名(实际并无意义,但是建议对应着来命名泛型):

  • E - Element
  • K - Key
  • N - Number
  • T - Type
  • V - Value
  • S,U,V etc. - 2nd, 3rd, 4th types

5. end

理解泛型之后可以方便我们更好的阅读Java框架的源码,实际编程来说不一定会用到,但是可以用到泛型编程的地方,建议使用,可以简化代码。

原文:https://www.cnblogs.com/XiiX/p/14719568.html
 

相关教程