-
Android 鼠标光标的图形合成原理实例探究
这篇文章主要为大家介绍了Android 鼠标光标的图形合成原理实例探究,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
引言
一直很好奇鼠标光标是如何实现的,它反映很快、延迟很小,没有受到 Android 显示系统的影响。正好最近做相关的工作,跟着源码好好研究一下。
本文参考 Android 9.0 源码。
从 Input 说起
我们并不是要讲 Input,只想看看鼠标光标的绘制过程。但是,Android 将鼠标光标的实现放到了 Input 中,这看起来也是合理的。在 Input 中,光标由类Sprite 实现。源码中对 Sprite 的解释为:显示在其他图层之上的图形对象。看来 Sprite 并非专为光标设计,但在源码中的位置表明,它在 Android 中也只为鼠标或触摸之类的输入设备的光标服务。Sprite 的定义中也只提供了简单的图形操作。
frameworks/base/libs/input/SpriteController.h
/*
* A sprite is a simple graphical object that is displayed on-screen above other layers.
* The basic sprite class is an interface.
* The implementation is provided by the sprite controller.
*/
class Sprite : public RefBase {
protected:
Sprite() { }
virtual ~Sprite() { }
public:
enum {
// The base layer for pointer sprites.
BASE_LAYER_POINTER = 0, // reserve space for 1 pointer
// The base layer for spot sprites.
BASE_LAYER_SPOT = 1, // reserve space for MAX_POINTER_ID spots
};
/* Sets the bitmap that is drawn by the sprite.
* The sprite retains a copy of the bitmap for subsequent rendering. */
virtual void setIcon(const SpriteIcon& icon) = 0;
inline void clearIcon() {
setIcon(SpriteIcon());
}
/* Sets whether the sprite is visible. */
virtual void setVisible(bool visible) = 0;
/* Sets the sprite position on screen, relative to the sprite's hot spot. */
virtual void setPosition(float x, float y) = 0;
/* Sets the layer of the sprite, relative to the system sprite overlay layer.
* Layer 0 is the overlay layer, > 0 appear above this layer. */
virtual void setLayer(int32_t layer) = 0;
/* Sets the sprite alpha blend ratio between 0.0 and 1.0. */
virtual void setAlpha(float alpha) = 0;
/* Sets the sprite transformation matrix. */
virtual void setTransformationMatrix(const SpriteTransformationMatrix& matrix) = 0;
};
控制光标的类叫做 SpriteController,PointerController 会使用这个类来显示光标。这里我们只关心光标图形的合成,真正显示和更新光标的方法是 SpriteController::doUpdateSprites() 。
frameworks/base/libs/input/SpriteController.cpp
void SpriteController::doUpdateSprites() {
// 从invalidatedSprites 中收集需要更新的 Sprite
Vector<SpriteUpdate> updates;
size_t numSprites;
{ // acquire lock
AutoMutex _l(mLock);
numSprites = mLocked.invalidatedSprites.size();
for (size_t i = 0; i < numSprites; i++) {
const sp<SpriteImpl>& sprite = mLocked.invalidatedSprites.itemAt(i);
updates.push(SpriteUpdate(sprite, sprite->getStateLocked()));
sprite->resetDirtyLocked();
}
mLocked.invalidatedSprites.clear();
} // release lock
// surfaces 未创建或丢失时,重新创建 surface
bool surfaceChanged = false;
for (size_t i = 0; i < numSprites; i++) {
SpriteUpdate& update = updates.editItemAt(i);
if (update.state.surfaceControl == NULL && update.state.wantSurfaceVisible()) {
update.state.surfaceWidth = update.state.icon.bitmap.width();
update.state.surfaceHeight = update.state.icon.bitmap.height();
update.state.surfaceDrawn = false;
update.state.surfaceVisible = false;
// 创建 Surface,我们这次的关注点
update.state.surfaceControl = obtainSurface(
update.state.surfaceWidth, update.state.surfaceHeight);
if (update.state.surfaceControl != NULL) {
update.surfaceChanged = surfaceChanged = true;
}
}
}
// 如果需要,重新调整 sprites 大小
SurfaceComposerClient::Transaction t;
bool needApplyTransaction = false;
for (size_t i = 0; i < numSprites; i++) {
......
if (update.state.surfaceWidth < desiredWidth
|| update.state.surfaceHeight < desiredHeight) {
needApplyTransaction = true;
t.setSize(update.state.surfaceControl,
desiredWidth, desiredHeight);
......
}
}
}
if (needApplyTransaction) {
t.apply();
}
// 如果需要,重画 sprites
for (size_t i = 0; i < numSprites; i++) {
SpriteUpdate& update = updates.editItemAt(i);
if ((update.state.dirty & DIRTY_BITMAP) && update.state.surfaceDrawn) {
update.state.surfaceDrawn = false;
update.surfaceChanged = surfaceChanged = true;
}
if (update.state.surfaceControl != NULL && !update.state.surfaceDrawn
&& update.state.wantSurfaceVisible()) {
sp<Surface> surface = update.state.surfaceControl->getSurface();
ANativeWindow_Buffer outBuffer;
......
// 使用 SKIA 画图
SkBitmap surfaceBitmap;
ssize_t bpr = outBuffer.stride * bytesPerPixel(outBuffer.format);
surfaceBitmap.installPixels(SkImageInfo::MakeN32Premul(outBuffer.width, outBuffer.height),
outBuffer.bits, bpr);
SkCanvas surfaceCanvas(surfaceBitmap);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
surfaceCanvas.drawBitmap(update.state.icon.bitmap, 0, 0, &paint);
if (outBuffer.width > update.state.icon.bitmap.width()) {
paint.setColor(0); // transparent fill color
surfaceCanvas.drawRect(SkRect::MakeLTRB(update.state.icon.bitmap.width(), 0,
outBuffer.width, update.state.icon.bitmap.height()), paint);
}
if (outBuffer.height > update.state.icon.bitmap.height()) {
paint.setColor(0); // transparent fill color
surfaceCanvas.drawRect(SkRect::MakeLTRB(0, update.state.icon.bitmap.height(),
outBuffer.width, outBuffer.height), paint);
}
......
}
// 根据 dirty 值来设置 Surface
needApplyTransaction = false;
for (size_t i = 0; i < numSprites; i++) {
SpriteUpdate& update = updates.editItemAt(i);
bool wantSurfaceVisibleAndDrawn = update.state.wantSurfaceVisible()
&& update.state.surfaceDrawn;
bool becomingVisible = wantSurfaceVisibleAndDrawn && !update.state.surfaceVisible;
bool becomingHidden = !wantSurfaceVisibleAndDrawn && update.state.surfaceVisible;
if (update.state.surfaceControl != NULL && (becomingVisible || becomingHidden
|| (wantSurfaceVisibleAndDrawn && (update.state.dirty & (DIRTY_ALPHA
| DIRTY_POSITION | DIRTY_TRANSFORMATION_MATRIX | DIRTY_LAYER
| DIRTY_VISIBILITY | DIRTY_HOTSPOT))))) {
......
}
if (needApplyTransaction) {
status_t status = t.apply();
if (status) {
ALOGE("Error applying Surface transaction");
}
}
......
}
一次的光标的更新就会涉及到如此多的代码逻辑,可见UI真是不容易。其他的逻辑线不管,这次我们只关心光标的图层。上述代码通过 obtainSurface() 来创建 Surface。
frameworks/base/libs/input/SpriteController.cpp
sp<SurfaceControl> SpriteController::obtainSurface(int32_t width, int32_t height) {
ensureSurfaceComposerClient();
sp<SurfaceControl> surfaceControl = mSurfaceComposerClient->createSurface(
String8("Sprite"), width, height, PIXEL_FORMAT_RGBA_8888,
ISurfaceComposerClient::eHidden |
ISurfaceComposerClient::eCursorWindow);
if (surfaceControl == NULL || !surfaceControl->isValid()) {
ALOGE("Error creating sprite surface.");
return NULL;
}
return surfaceControl;
}
这里我们需要重点关注的是 createSurface() 方法中的参数 flags。Sprite 中这个 flags 设置了eHidden和eCursorWindow,它们表明创建的 Surface 是隐藏的,并标识为 Cursor 使用。
来到 Surface
Input 中为光标创建了一个 Surface,并且标识这是一个 Cursor 使用的 Surface。之后,Surface 中会根据情形对光标图层做特殊处理,这里的关键字就是 Cursor。
我们还是以光标图层为主线进行跟踪,先继续看下createSurface()。经过一系列的 Binder 调用和 Message传递,最终通过 SurfaceFlinger 的createLayer()完成图层创建。
frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
status_t SurfaceFlinger::createLayer(const String8& name, const sp<Client>& client, uint32_t w,
uint32_t h, PixelFormat format, uint32_t flags,
int32_t windowType, int32_t ownerUid, sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp,
const sp<IBinder>& parentHandle,
const sp<Layer>& parentLayer) {
......
switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
// 普通图层
case ISurfaceComposerClient::eFXSurfaceNormal:
result = createBufferLayer(client,
uniqueName, w, h, flags, format,
handle, gbp, &layer);
break;
// 纯色图层
case ISurfaceComposerClient::eFXSurfaceColor:
result = createColorLayer(client,
uniqueName, w, h, flags,
handle, &layer);
break;
default:
result = BAD_VALUE;
break;
}
......
// Client中通过Layer管理Surface,将创建的Layer加入到LayerStack中
result = addClientLayer(client, *handle, *gbp, layer, parentHandle, parentLayer);
if (result != NO_ERROR) {
return result;
}
mInterceptor->saveSurfaceCreation(layer);
setTransactionFlags(eTransactionNeeded);
return result;
}
createLayer()中,光标算是普通图层,所以仅需调用createBufferLayer()来创建。
frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
status_t SurfaceFlinger::createBufferLayer(const sp<Client>& client,
const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
{
......
// 创建一个BufferLayer
sp<BufferLayer> layer = new BufferLayer(this, client, name, w, h, flags);
// 设置Buffer属性
status_t err = layer->setBuffers(w, h, format, flags);
if (err == NO_ERROR) {
*handle = layer->getHandle(); // 获取Layer的句柄
*gbp = layer->getProducer(); // 获取GraphicBufferProducer对象
*outLayer = layer;
}
ALOGE_IF(err, "createBufferLayer() failed (%s)", strerror(-err));
return err;
}
其中layer->setBuffers()设置了该BufferLayer的属性。可以看到,当申请的是一个 Cursor 图层时,mPotentialCursor被设置为true,表明该 BufferLayer 作为 Cursor 使用。
frameworks/native/services/surfaceflinger/BufferLayer.cpp
status_t BufferLayer::setBuffers(uint32_t w, uint32_t h, PixelFormat format, uint32_t flags) {
......
mFormat = format;
mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false;
mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
mCurrentOpacity = getOpacityForFormat(format);
mConsumer->setDefaultBufferSize(w, h);
mConsumer->setDefaultBufferFormat(format);
mConsumer->setConsumerUsageBits(getEffectiveUsage(0));
return NO_ERROR;
}
SurfaceFlinger 中的 Cursor 操作
上面讲到 Cursor Layer 最核心的属性mPotentialCursor,createSurface()只是设置了这个属性,真正的使用在 SurfaceFlinger 渲染过程中。接着我发现,想把这个东西看明白,先需要把 Android 图形合成弄清楚,这可是的庞大的工程。借张图,有兴趣的自己研究。
但是,时间有限,怎么办?我的解决办法就是搜索关键字。搜索关键字Cursor后,可以得到一些相关的操作。SurfaceFlinger 接收到 Vsync 信号后,会调用handleMessageRefresh()来刷新显示。
frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
void SurfaceFlinger::handleMessageRefresh() {
......
preComposition(refreshStartTime); //合成预处理
rebuildLayerStacks(); //重新构建LayerStacks
setUpHWComposer(); //更新HWComposer的图层和属性
doDebugFlashRegions(); //图形绘制的debug模式
doTracing("handleRefresh");
logLayerStats();
doComposition(); //合成所有图层
postComposition(refreshStartTime); //合成后处理
......
}
我们还是只关心 Cursor 的操作,它位于 HWComposer 控制的图层中。
frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
void SurfaceFlinger::setUpHWComposer() {
......
// 遍历所有的DisplayDevice,为绘制做准备
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
......
mDisplays[dpy]->beginFrame(mustRecompose);
if (mustRecompose) {
mDisplays[dpy]->lastCompositionHadVisibleLayers = !empty;
}
}
// 设置HWC Layer
if (CC_UNLIKELY(mGeometryInvalid)) {
mGeometryInvalid = false;
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
......
for (size_t i = 0; i < currentLayers.size(); i++) {
const auto& layer = currentLayers[i];
// 尝试创建HWC Layer,如果失败则强制OpenGL渲染
if (!layer->hasHwcLayer(hwcId)) {
if (!layer->createHwcLayer(getBE().mHwc.get(), hwcId)) {
layer->forceClientComposition(hwcId);
continue;
}
}
// 设置HWC Layer的显示区域、合成模式、Alpha、Order等
layer->setGeometry(displayDevice, i);
// HWC被禁止或绘制debug模式时,强制OpenGL渲染
if (mDebugDisableHWC || mDebugRegion) {
layer->forceClientComposition(hwcId);
}
......
}
// 准备HWC需要渲染的数据
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
const auto hwcId = displayDevice->getHwcDisplayId();
......
//调用 setPerFrameData方法
layer->setPerFrameData(displayDevice);
......
}
......
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
......
// 尝试进行显示
status_t result = displayDevice->prepareFrame(*getBE().mHwc);
......
}
}
其中setPerFrameData()完成 HWComposer 的相关设置,为显示做准备。
frameworks/native/services/surfaceflinger/BufferLayer.cpp
void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) {
......
// 设置可见区域
auto error = hwcLayer->setVisibleRegion(visible);
......
// 设置刷新区域
error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
......
// Sideband layers设置
if (getBE().compositionInfo.hwc.sidebandStream.get()) {
setCompositionType(hwcId, HWC2::Composition::Sideband);
error = hwcLayer->setSidebandStream(getBE().compositionInfo.hwc.sidebandStream->handle());
......
return;
}
if (mPotentialCursor) {
// Cursor layers设置
setCompositionType(hwcId, HWC2::Composition::Cursor);
} else {
// Device layers设置
setCompositionType(hwcId, HWC2::Composition::Device);
}
// 设置色彩空间
error = hwcLayer->setDataspace(mCurrentDataSpace);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), mCurrentDataSpace,
to_string(error).c_str(), static_cast<int32_t>(error));
}
// 获取HDR数据并设置到HWC中
const HdrMetadata& metadata = mConsumer->getCurrentHdrMetadata();
error = hwcLayer->setPerFrameMetadata(displayDevice->getSupportedPerFrameMetadata(), metadata);
......
// 获取渲染的数据buffer和Fence,设置到HWC中
sp<GraphicBuffer> hwcBuffer;
hwcInfo.bufferCache.getHwcBuffer(getBE().compositionInfo.mBufferSlot,
getBE().compositionInfo.mBuffer, &hwcSlot, &hwcBuffer);
auto acquireFence = mConsumer->getCurrentFence();
error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence);
......
}
我们终于找到了希望看到的mPotentialCursor,通过这个标识告诉 HWC2 这是一个 CursorLayer。除此之外,对于 CursorLayer 的操作与 DeviceLayer 并没有区别。所以,SurfaceFlinger 更多的是希望 HWComposer 根据 Layer 的类型进行不同处理。目前 HWC2 支持的 Layer 类型有,
HWC2_COMPOSITION_CLIENT:不通过 HWC 硬件来合成图层。GPU 将这类图层合成到一个图像 Buffer 中,然后传递给 HWC。
HWC2_COMPOSITION_DEVICE:使用 HWC 硬件来合成图层。
HWC2_COMPOSITION_SOLID_COLOR:用来处理 ColorLayer 数据,如果 HWC 不支持,则改为使用 CLIENT 方式合成。
HWC2_COMPOSITION_CURSOR:用来处理 CursorLayer 数据,位置通过setCursorPosition 异步设置。如果 HWC 不支持,则改为使用 CLIENT 或 DEVICE 方式合成。
HWC2_COMPOSITION_SIDEBAND:对于这种 Layer,需要由外部机制提供内容更新,例如电视信号的视频数据。如果 HWC 不支持,则改为使用 CLIENT 或 DEVICE 方式合成,但可能无法正确显示。
Cursor Layer还有一个重要的操作,setCursorPosition(),这个方法用来设置 Cursor 的位置,具体的实现依然在 HWComposer 中。当用户进程更新 Surface 图形时,SurfaceFlinger 会发送INVALIDATE消息给相应的 Layer。消息处理函数调用handleTransaction()和handlePageFlip()来更新Layer对象。handleTransaction()
用来处理 Layer 和显示设备的变化,它继续调用handleTransactionLocked()。
frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
{
......
// 处理Layer的变化
if (transactionFlags & eTraversalNeeded) {
......
}
// 处理显示设备的变化
if (transactionFlags & eDisplayTransactionNeeded) {
processDisplayChangesLocked();
processDisplayHotplugEventsLocked();
}
// 设置transform hint
if (transactionFlags & (eDisplayLayerStackChanged|eDisplayTransactionNeeded)) {
......
}
//处理Layer的增减
if (mLayersAdded) {
......
}
if (mLayersRemoved) {
......
}
commitTransaction();
// 更新光标位置
updateCursorAsync();
}
我们找到了 Cursor 更新的地方,SurfaceFlinger 更新图形时会同步更新光标位置。之后,在 Vsync 到来时,完成图像的更新显示。
frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
void SurfaceFlinger::updateCursorAsync()
{
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
......
// 调用Layer的对应方法
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
layer->updateCursorPosition(displayDevice);
}
}
}
frameworks/native/services/surfaceflinger/Layer.cpp
void Layer::updateCursorPosition(const sp<const DisplayDevice>& displayDevice) {
// HWC Layer不存在或者不是Cursor Layer,不做处理
auto hwcId = displayDevice->getHwcDisplayId();
if (getBE().mHwcLayers.count(hwcId) == 0 ||
getCompositionType(hwcId) != HWC2::Composition::Cursor) {
return;
}
......
// 获取图层的位置
Rect bounds = reduce(win, s.activeTransparentRegion);
Rect frame(getTransform().transform(bounds));
frame.intersect(displayDevice->getViewport(), &frame);
if (!s.finalCrop.isEmpty()) {
frame.intersect(s.finalCrop, &frame);
}
auto& displayTransform(displayDevice->getTransform());
auto position = displayTransform.transform(frame);
// 调用HWC的方法来设置图层位置
auto error = getBE().mHwcLayers[hwcId].layer->setCursorPosition(position.left, position.top);
}
到达 HWComposer
上面分析了许多代码,但真正与 Cursor 相关的并不多。CursorLayer 的真正实现还是在 HWComposer 中。但是 HWComposer 的实现是与平台相关的,不同的平台对 CursorLayer 的实现可能不同。效率的方式是使用一个独立的硬件 OSD 来显示 CursorLayer,然后通过硬件合成的方式将 CursorLayer 叠加到 UI 显示层。使用这种方式,光标的移动效率也很高,只要改变硬件 OSD 显示的位置即可。如果没有独立的硬件 OSD 来使用,就只能在标准显示层上进行软件叠加,或者使用 GPU 来叠加。
参考:
Android显示系统SurfaceFlinger详解
Android SurfaceFlinger
由于跟平台相关的实现具有私密性,这里不再继续分析,更多关于Android鼠标光标图形合成的资料请关注
原文链接:https://segmentfault.com/a/1190000041693760