VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > Python基础教程 >
  • Python科学计算库Numpy数组的初始化和基本操作(3)

 

两个二维使用*符号仍然是按位置一对一相乘,如果想表示矩阵乘法,使用dot:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> A = np.array( [[1,1],
...             [0,1]] )
>>> B = np.array( [[2,0],
...             [3,4]] )
>>> A*B                         # elementwise product
array([[2, 0],
       [0, 4]])
>>> A.dot(B)                    # matrix product
array([[5, 4],
       [3, 4]])
>>> np.dot(A, B)                # another matrix product
array([[5, 4],
       [3, 4]])

 

内置函数(min,max,sum),同时可以使用axis指定对哪一维进行操作:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> b.sum(axis=0)                            # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1)                            # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1)                         # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])

 

Numpy同时提供很多全局函数

1
2
3
4
5
6
7
8
9
10
>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> np.sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,  0.,  6.])

相关教程