当前位置:
首页 > Python基础教程 >
-
用Python进行机器学习实例(3)
显然,这两条直线更好的描述了数据的特征,虽然其逼近误差还是比那些高阶多项式曲线的误差要大,但是这种方式的拟合可以更好的获取数据的发展趋势。相对于高阶多项式曲线的过拟合现象,对于低阶的曲线,由于没有很好的描述数据,而导致欠拟合的情形。所以为了更好的描述数据特征,使用2阶曲线来拟合数据,来避免过拟合和欠拟合现象的发生。
训练与测试
我们训练得到了一个模型,这里就是我们拟合的两个曲线。为了验证我们训练的模型是否准确,我们可以在最初训练时将一部分训练数据拿出来,当做测试数据来使用,而不仅仅通过逼近误差来判别模型好坏。
总结
这一小节作为机器学习小实验的引入,主要传递两点意思:
1、要训练一个学习器,必须理解和提炼数据,将注意力从算法转移到数据上
2、学习如何进行机器学习实验,不要混淆训练和测试数据
栏目列表
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
SQL SERVER中递归
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
这是目前我见过最好的跨域解决方案!
减少回流与重绘
减少回流与重绘
如何使用KrpanoToolJS在浏览器切图
performance.now() 与 Date.now() 对比
一款纯 JS 实现的轻量化图片编辑器
关于开发 VS Code 插件遇到的 workbench.scm.
前端设计模式——观察者模式
前端设计模式——中介者模式
创建型-原型模式