VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > Python基础教程 >
  • Python要点总结,我使用了100个小例子!(2)

'r', encoding='utf-8') In [147]: fo.read() Out[147]: '\ufefflife is not so long,\nI use Python to play.'

mode取值表:

字符 意义
'r' 读取(默认)
'w' 写入,并先截断文件
'x' 排它性创建,如果文件已存在则失败
'a' 写入,如果文件存在则在末尾追加
'b' 二进制模式
't' 文本模式(默认)
'+' 打开用于更新(读取与写入)

48 pow( base , exp [, mod ])

base为底的exp次幂,如果mod给出,取余

In [149]: pow(3, 2, 4)
Out[149]: 1

49 print(objects)

打印对象,此函数不解释

50 class property( fget=None , fset=None , fdel=None , doc=None )

返回 property 属性,典型的用法:

class C:
    def __init__(self):
        self._x = None

    def getx(self):
        return self._x

    def setx(self, value):
        self._x = value

    def delx(self):
        del self._x
    # 使用property类创建 property 属性
    x = property(getx, setx, delx, "I'm the 'x' property.")

使用python装饰器,实现与上完全一样的效果代码:

class C:
    def __init__(self):
        self._x = None

    @property
    def x(self):
        return self._x

    @x.setter
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x

51 range(stop)

range(start, stop[,step])

生成一个不可变序列:

In [153]: range(11)
Out[153]: range(0, 11)

In [154]: range(0,11,1)
Out[154]: range(0, 11)

52 reversed( seq )

返回一个反向的 iterator:

In [155]: rev = reversed([1,4,2,3,1])

In [156]: for i in rev:
     ...:     print(i)
     ...:
1
3
2
4
1

53 round( number [, ndigits ])

四舍五入,ndigits代表小数点后保留几位:

In [157]: round(10.0222222, 3)
Out[157]: 10.022

54 class set([ iterable ])

返回一个set对象,可实现去重:

In [159]: a = [1,4,2,3,1]

In [160]: set(a)
Out[160]: {1, 2, 3, 4}

55 class slice( stop )

class slice( start , stop [, step ])

返回一个表示由 range(start, stop, step) 所指定索引集的 slice对象

In [170]: a = [1,4,2,3,1]

In [171]: a[slice(0,5,2)] #等价于a[0:5:2]
Out[171]: [1, 2, 1]

56 sorted( iterable , *, key=None , reverse=False )

排序:

In [174]: a = [1,4,2,3,1]

In [175]: sorted(a,reverse=True)
Out[175]: [4, 3, 2, 1, 1]

In [178]: a = [{'name':'xiaoming','age':18,'gender':'male'},{'name':'
     ...: xiaohong','age':20,'gender':'female'}]
In [180]: sorted(a,key=lambda x: x['age'],reverse=False)
Out[180]:
[{'name': 'xiaoming', 'age': 18, 'gender': 'male'},
 {'name': 'xiaohong', 'age': 20, 'gender': 'female'}]

57 @ staticmethod

将方法转换为静态方法,不做解释

58 vars()

返回模块、类、实例或任何其它具有 __dict__ 属性的对象的 __dict__ 属性

In [2]: vars()
Out[2]:
{'__name__': '__main__',
 '__doc__': 'Automatically created module for IPython interactive environment',
 '__package__': None,
 '__loader__': None,
 '__spec__': None,
 '__builtin__': <module 'builtins' (built-in)>,
 '__builtins__': <module 'builtins' (built-in)>,
 '_ih': ['', 'vars([1,2,3])', 'vars()'],
 '_oh': {},
 '_dh': ['C:\\Windows\\system32'],
 'In': ['', 'vars([1,2,3])', 'vars()'],
 'Out': {},
 'get_ipython': <bound method InteractiveShell.get_ipython of <IPython.terminal.interactiveshell.TerminalInteractiveShell object at 0x0000026004D91C50>>,
 'exit': <IPython.core.autocall.ExitAutocall at 0x26006011048>,
 'quit': <IPython.core.autocall.ExitAutocall at 0x26006011048>,
 '_': '',
 '__': '',
 '___': '',
 '_i': 'vars([1,2,3])',
 '_ii': '',
 '_iii': '',
 '_i1': 'vars([1,2,3])',
 '_i2': 'vars()'}

59 sum( iterable , / , start=0 )

求和:

In [181]: a = [1,4,2,3,1]

In [182]: sum(a)
Out[182]: 11

In [185]: sum(a,10) #求和的初始值为10
Out[185]: 21

60 super([ type [, object-or-type ]])

返回一个代理对象,它会将方法调用委托给 type 的父类或兄弟类

61 tuple([ iterable ])

虽然被称为函数,但 tuple 实际上是一个不可变的序列类型

62 class type ( object )

class type ( name , bases , dict )

传入一个参数时,返回 object 的类型:

In [186]: type(xiaoming)
Out[186]: __main__.Student

In [187]: type(tuple())
Out[187]: tuple

63 zip (* iterables )

创建一个聚合了来自每个可迭代对象中的元素的迭代器:

In [188]: x = [3,2,1]
In [189]: y = [4,5,6]
In [190]: list(zip(y,x))
Out[190]: [(4, 3), (5, 2), (6, 1)]


In [191]: a = range(5)
In [192]: b = list('abcde')
In [193]: b
Out[193]: ['a', 'b', 'c', 'd', 'e']
In [194]: [str(y) + str(x) for x,y in zip(a,b)]
Out[194]: ['a0', 'b1', 'c2', 'd3', 'e4']

3 列表生成式

python里面[] 表示一个列表,对容器类型的数据进行运算和操作,生成新的列表最高效、快速的办法,就是列表生成式。它优雅、简洁,值得大家多多使用!今天盘点列表生成式在工作中的主要使用场景。

3.1 入门例子

1

range快速生成连续列表

In [1]: a = range(11)

In [2]: a
Out[2]: range(0, 11)

In [3]: list(a)
Out[3]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

2

对列表里面的数据进行运算后重新生成一个新的列表:

In [5]: a = range(0,11)

In [6]: b = [x**2 for x in a]

In [7]: b
Out[7]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

3

对一个列表里面的数据筛选,只计算[0,11) 中偶数的平方:

In [10]: a = range(11)

In [11]: c = [x**2 for x in a if x%2==0]

In [12]: c
Out[12]: [0, 4, 16, 36, 64, 100]

4

前面列表生成式都只传一个参数x,带有两个参数的运算:

In [13]: a = range(5)

In [14]: b = ['a','b','c','d','e']
In [20]: c = [str(y) + str(x) for x, y in zip(a,b)]
In [21]: c
Out[21]: ['a0', 'b1', 'c2', 'd3', 'e4']

3.2 中级例子

5

结合字典,打印键值对:

In [22]: a = {'a':1,'b':2,'c':3}
In [23]: b = [k+ '=' + v for k, v in a.items()]
In [24]: b = [k+ '=' + str(v) for k, v in a.items()]
In [25]: b
Out[25]: ['a=1', 'b=2', 'c=3']

6

输出某个目录下的所有文件和文件夹的名称:

In [33]: [d for d in os.listdir('d:/summary')]
Out[33]: ['a.txt.txt', 'python-100']

7

列表中所有单词都转化为小写:

In [34]: a = ['Hello', 'World', '2019Python']

In [35]: [w.lower() for w in a]
Out[35]: ['hello', 'world', '2019python']

3.3 高级例子

8

将值分组:

In [36]: def bifurcate(lst, filter):
    ...:   return [
    ...:     [x for i,x in enumerate(lst) if filter[i] == True],
    ...:     [x for i,x in enumerate(lst) if filter[i] == False]
    ...:   ]
    ...:
In [37]: bifurcate(['beep', 'boop', 'foo', 'bar'], [True, True, False, True])

Out[37]: [['beep', 'boop', 'bar'], ['foo']]

9

进一步抽象例子8,根据指定函数fn 对lst 分组:

In [38]: def bifurcate_by(lst, fn):
    ...:   return [
    ...:     [x for x in lst if fn(x)],
    ...:     [x for x in lst if not fn(x)]
    ...:   ]
    ...:

In [39]: bifurcate_by(['beep', 'boop', 'foo', 'bar'], lambda x: x[0] == 'b')
Out[39]: [['beep', 'boop', 'bar'], ['foo']]

10

返回可迭代对象的差集,注意首先 都把a, b 用set 包装

In [53]: def difference(a, b):
    ...:   _a, _b =set(a),set(b)
    ...:   return [item for item in _a if item not in _b]
    ...:
    ...:

In [54]: difference([1,1,2,3,3], [1, 2, 4])
Out[54]: [3]

11

进一步抽象10,根据函数fn 映射后选取差集,如下列表元素分别为单个元素和字典的例子:

In [61]: def difference_by(a, b, fn):
    ...:     ...:   _b = set(map(fn, b))
    ...:     ...:   return [item for item in a if fn(item) not in _b]
    ...:     ...:
    ...:

In [62]: from math import floor
    ...: difference_by([2.1, 1.2], [2.3, 3.4],floor)
Out[62]: [1.2]

In [63]: difference_by([{ 'x': 2 }, { 'x': 1 }], [{ 'x': 1 }], lambda v : v['x'])
Out[63]: [{'x': 2}]

12

过滤非重复值,结合list 的count( 统计出元素在列表中出现次数):

In [64]: def filter_non_unique(lst):
    ...:   return [item for item in lst if lst.count(item) == 1]

In [65]: filter_non_unique([1, 2, 2, 3, 4, 4, 5])
Out[65]: [1, 3, 5]

4 Collections

Python有许多很好的库(libraries),实现这些功能只需要几行代码。今天介绍一个库: collections . 这个模块提供容器相关的更高性能的数据类型,它们提供比通用容器 dict , list , set 和 tuple 更强大的功能。

今天介绍其中三种数据类型,最后你可能会惊讶它们怎么这么好用。

4.1 NamedTuple

对于数据分析或机器学习领域,用好namedtuples 会写出可读性强、易于维护的代码。大家回忆这种熟悉的场景,你正在做特征工程,因为你尤其喜爱list, 所以把一堆特征放到一个list 中,然后喂到机器学习模型中。很快,你将会意识到数百个特征位于此list 中,这就是事情变得糟糕的开始。

In [10]: feature = ['age','height','name']

In [11]: data = [[10,1,'xiaoming'],[12,1,5,'xiaohong']]

In [12]: data[0][0] #只能靠整数索引到某个特征,0对应age
Out[12]: 10

某天,你想使用某个特征,这时比较棘手,你不知道它的index!更糟糕的是,当你准备离职要交接工作时,他们看到一个一个的数字型索引,完全对不上哪个和哪个,他们懵逼,你也尴尬。

如果我们使用NamedTuples去处理以上数据,乱为一团的事情将会迅速变得井然有序:

In [4]: Person = namedtuple('Person',['age','height','name'])
In [15]: data2 = [Person(10,1.4,'xiaoming'),Person(12,1.5,'xiaohong')]
In [16]: data2[0].age
Out[16]: 10

仅仅几行代码,我们将会很容易索引到第0行数据的age属性取值,这在实际中真是太好用。你告别indexes访问你的数据集中的特征值,而是使用更加人性化,可读性强的names索引。

NamedTuples会使得代码易读、更易维护。

4.2 Counter

Counter正如名字那样,它的主要功能就是计数。这听起来简单,但是我们在分析数据时,基本都会涉及计数,真的家常便饭。

习惯使用list 的看过来,有一些数值已经放在一个list中:

skuPurchaseCount = [3, 8, 3, 10, 3, 3, 1, 3, 7, 6, 1, 2, 7, 0, 7, 9, 1, 5, 1, 0]
In [33]: for i in skuPurchaseCount:
    ...:     if countdict.get(i) is None:
    ...:         countdict[i]=1
    ...:     else:
    ...:         countdict[i]+=1
In [34]: countdict
Out[34]: {3: 5, 8: 1, 10: 1, 1: 4, 7: 3, 6: 1, 2: 1, 0: 2, 9: 1, 5: 1}

如果使用Counter,我们可以写出更简化的代码:

In [35]: from collections import Counter
In [42]: Counter(skuPurchaseCount).most_common()
Out[42]:
[(3, 5),(1, 4),(7, 3),(0, 2),(8, 1),(10, 1),(6, 1),(2, 1),(9, 1),(5, 1)]

仅仅一行代码,我们便输出统计计数结果,并且是一个按照次数统计出来的由大到小排序好的tuples列表,因此我们很快就会看到,购买3次是出现最多的,一共5次。

购买为1次的占多数,属于长尾。

4.3 DefaultDict

DefaultDict是一个被初始化的字典,也就是每个键都已经被访问一次:

In [53]: d = defaultdict(int)
In [54]: for k in 'collections':
    ...:     d[k] += 1
In [55]: d
Out[55]:
defaultdict(int,
            {'c': 2, 'o': 2, 'l': 2, 'e': 1, 't': 1, 'i': 1, 'n': 1, 's': 1})

一般地,当你尝试访问一个不在字典中的值时,将会抛出一个异常。但是defaultdict可以帮助我们初始化,它的参数作为default_factory. 在上面例子中,将生成 int 对象,意思是默认值为int 型,并 设定初始值为0 ,所以我们可以很容易地统计每个字符出现的次数。

Simple and clean!

更有用的一个使用场景,我们有很多种商品,在每秒内下单次数的统计数据如下:

In [56]: data = [('iphone11',103), ('华为macbook-SKU1232',210),('iphone11',21),('
    ...: 华为macbook-SKU1232',100)]
In [57]: d = defaultdict(list)
In [58]: for ele in data:
    ...:     d[ele[0]].append(ele[1])
In [59]: d
Out[59]: defaultdict(list, {'iphone11': [103, 21], '华为macbook-SKU1232': [210, 100]})

上面例子default_dict取值为list, 因此,我们可以立即append一个元素到list中,更简洁。

总结

至此,你已经了解collections库中的三个类型,它们确实太好用,大家可以操练起来了!

5 itertools: 高效节省内存的方法

Python循环这样写,高效节省内存100倍

5.0 前言

说到处理循环,我们习惯使用for, while等,比如依次打印每个列表中的字符:

lis = ['I', 'love', 'python']
for i in lis:
    print(i)
I
love
python

在打印内容字节数较小时,全部载入内存后,再打印,没有问题。可是,如果现在有成千上百万条车辆行驶轨迹,叫你分析出其中每个客户的出行规律,堵车情况等,假如是在单机上处理这件事。

你可能首先要面临,也可能被你忽视,最后代码都写好后,才可能暴露出的一个问题: outofmemory , 这在实际项目中经常遇到。

这个问题提醒我们,处理数据时,如何写出高效利用内存的程序,就显得很重要。今天,我们就来探讨如何高效利用内存,节省内存同时还能把事情办好。

其实,Python已经准备好一个模块专门用来处理这件事,它就是 itertools 模块,这里面几个函数的功能其实很好理解。

我不打算笼统的介绍它们所能实现的功能,而是想分析这些功能背后的实现代码,它们如何做到高效节省内存的,Python内核的贡献者们又是如何写出一手漂亮的代码的,这很有趣,不是吗?

OK,let's go. Hope you enjoy the journey!

5.1 拼接元素

itertools 中的chain 函数实现元素拼接,原型如下,参数*表示个数可变的参数

chain ( iterables )

应用如下:

In [33]: list(chain(['I','love'],['python'],['very', 'much']))
Out[33]: ['I', 'love', 'python', 'very', 'much']

哇,不能再好用了,它有点join的味道,但是比join强,它的重点在于参数都是可迭代的实例。

那么,chain如何实现高效节省内存的呢?chain大概的实现代码如下:

def chain(*iterables):
    for it in iterables:
        for element in it:
            yield element

以上代码不难理解, chain本质返回一个生成器,所以它实际上是一次读入一个元素到内存,所以做到最高效地节省内存 。

5.2 逐个累积

返回列表的累积汇总值,原型:

accumulate ( iterable [, func , *, initial=None ])

应用如下:

In [36]: list(accumulate([1,2,3,4,5,6],lambda x,y: x*y))
Out[36]: [1, 2, 6, 24, 120, 720]

accumulate大概的实现代码如下:

def accumulate(iterable, func=operator.add, *, initial=None):
    it = iter(iterable)
    total = initial
    if initial is None:
        try:
            total = next(it)
        except StopIteration:
            
      



  

相关教程