首页 > Python基础教程 >
-
Python要点总结,我使用了100个小例子!(3)
以上代码,你还好吗?与chain简单的yield不同,此处稍微复杂一点,yield有点像return,所以 yield total
那行直接就返回一个元素,也就是iterable的第一个元素,因为任何时候这个函数返回的第一个元素就是它的第一个。又因为yield返回的是一个generator对象,比如名字gen,所以next(gen)时,代码将会执行到 for element in it:
这行,而此时的迭代器it 已经指到iterable的第二个元素,OK,相信你懂了!
5.3 漏斗筛选
它是compress 函数,功能类似于漏斗功能,所以我称它为漏斗筛选,原型:
compress
( data , selectors )
In [38]: list(compress('abcdefg',[1,1,0,1]))
Out[38]: ['a', 'b', 'd']
容易看出,compress返回的元素个数等于两个参数中较短的列表长度。
它的大概实现代码:
def compress(data, selectors):
return (d for d, s in zip(data, selectors) if s)
这个函数非常好用
5.4 段位筛选
扫描列表,不满足条件处开始往后保留,原型如下:
dropwhile
( predicate , iterable )
应用例子:
In [39]: list(dropwhile(lambda x: x<3,[1,0,2,4,1,1,3,5,-5]))
Out[39]: [4, 1, 1, 3, 5, -5]
实现它的大概代码如下:
def dropwhile(predicate, iterable):
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x
5.5 段位筛选2
扫描列表,只要满足条件就从可迭代对象中返回元素,直到不满足条件为止,原型如下:
takewhile
( predicate , iterable )
应用例子:
In [43]: list(takewhile(lambda x: x<5, [1,4,6,4,1]))
Out[43]: [1, 4]
实现它的大概代码如下:
def takewhile(predicate, iterable):
for x in iterable:
if predicate(x):
yield x
else:
break #立即返回
5.6 次品筛选
扫描列表,只要不满足条件都保留,原型如下:
dropwhile
( predicate , iterable )
应用例子:
In [40]: list(filterfalse(lambda x: x%2==0, [1,2,3,4,5,6]))
Out[40]: [1, 3, 5]
实现它的大概代码如下:
def dropwhile(predicate, iterable):
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x
5.7 切片筛选
Python中的普通切片操作,比如:
lis = [1,3,2,1] lis[:1]
它们的缺陷还是lis 必须全部载入内存,所以更节省内存的操作islice,原型如下:
islice
( iterable , start , stop [, step ])
应用例子:
In [41]: list(islice('abcdefg',1,4,2))
Out[41]: ['b', 'd']
实现它的大概代码如下:
def islice(iterable, *args):
s = slice(*args)
start, stop, step = s.start or 0, s.stop or sys.maxsize, s.step or 1
it = iter(range(start, stop, step))
try:
nexti = next(it)
except StopIteration:
for i, element in zip(range(start), iterable):
pass
return
try:
for i, element in enumerate(iterable):
if i == nexti:
yield element
nexti = next(it)
except StopIteration:
for i, element in zip(range(i + 1, stop), iterable):
pass
巧妙利用生成器迭代结束时会抛出异常 StopIteration
,做一些边界处理的事情。
5.8 细胞分裂
tee函数类似于我们熟知的细胞分裂,它能复制原迭代器n个,原型如下:
tee
( iterable , n=2 )
应用如下,可以看出复制出的两个迭代器是独立的
a = tee([1,4,6,4,1],2)
In [51]: next(a[0])
Out[51]: 1
In [52]: next(a[1])
Out[52]: 1
实现它的代码大概如下:
def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen(mydeque):
while True:
if not mydeque:
try:
newval = next(it)
except StopIteration:
return
for d in deques:
d.append(newval)
yield mydeque.popleft()
return tuple(gen(d) for d in deques)
tee 实现内部使用一个队列类型deques,起初生成空队列,向复制出来的每个队列中添加元素newval, 同时yield 当前被调用的mydeque中的最左元素。
5.9 map变体
starmap可以看做是map的变体,它能更加节省内存,同时iterable的元素必须也为可迭代对象,原型如下:
starmap
( function , iterable )
应用它:
In [63]: list(starmap(lambda x,y: str(x)+'-'+str(y), [('a',1),('b',2),('c',3)]))
Out[63]: ['a-1', 'b-2', 'c-3']
starmap的实现细节如下:
def starmap(function, iterable):
for args in iterable:
yield function(*args)
5.10 复制元素
repeat实现复制元素n次,原型如下:
repeat
( object [, times ])
应用如下:
In [66]: list(repeat(6,3))
Out[66]: [6, 6, 6]
In [67]: list(repeat([1,2,3],2))
Out[67]: [[1, 2, 3], [1, 2, 3]]
它的实现细节大概如下:
def repeat(object, times=None):
if times is None:# 如果times不设置,将一直repeat下去
while True:
yield object
else:
for i in range(times):
yield object
5.11 笛卡尔积
笛卡尔积实现的效果同下:
((x,y) for x in A for y in B)
所以,笛卡尔积的实现效果如下:
In [68]: list(product('ABCD', 'xy'))
Out[68]:
[('A', 'x'),
('A', 'y'),
('B', 'x'),
('B', 'y'),
('C', 'x'),
('C', 'y'),
('D', 'x'),
('D', 'y')]
它的实现细节:
def product(*args, repeat=1):
pools = [tuple(pool) for pool in args] * repeat
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
5.12 加强版zip
组合值。若可迭代对象的长度未对齐,将根据 fillvalue 填充缺失值,注意: 迭代持续到耗光最长的可迭代对象
,效果如下:
In [69]: list(zip_longest('ABCD', 'xy', fillvalue='-'))
Out[69]: [('A', 'x'), ('B', 'y'), ('C', '-'), ('D', '-')]
它的实现细节:
def zip_longest(*args, fillvalue=None):
iterators = [iter(it) for it in args]
num_active = len(iterators)
if not num_active:
return
while True:
values = []
for i, it in enumerate(iterators):
try:
value = next(it)
except StopIteration:
num_active -= 1
if not num_active:
return
iterators[i] = repeat(fillvalue)
value = fillvalue
values.append(value)
yield tuple(values)
它里面使用repeat,也就是在可迭代对象的长度未对齐时,根据 fillvalue 填充缺失值。理解上面代码的关键是迭代器对象(iter),next方法的特殊性:
In [74]: for i, it in enumerate([iter([1,2,3]),iter(['x','y'])]):
...: print(next(it))
#输出:
1
x
结合这个提示再理解上面代码,就不会吃力。
5.13 总结
Python的itertools模块提供的节省内存的高效迭代器,里面实现基本都借助于生成器,所以一方面了解这12个函数所实现的基本功能,同时也能加深对生成器(generator)的理解,为我们写出更加高效、简洁、漂亮的代码打下坚实基础。
6 模块
太好了,一分钟带你分清Python的模块、包和库
6.1 模块
一个.py文件就称之为一个模块(Module),一个模块里可能会包含很多函数,函数命名时,尽量不要与内置函数名字冲突。
常见的内置函数见文章:
Pandas的concat.py模块如下:
img
里面包括3个函数和1个类
注意
:
系统自带了sys模块,自己的模块就不可命名为sys.py,否则将无法导入系统自带的sys模块。检查方法是在Python交互环境执行 import abc
,若成功则说明系统存在此模块。
6.2 包
包(Package)下有多个模块,如下为pandas 的reshape 包,里面包括多个.py 文件。
img
里面有一个.py文件比较特殊,也是每个包下必须包括的,它是 __init__.py
__init__.py
可以是空文件,在此处reshape包下的这个文件就是空的。当然,也可以有Python代码,因为 __init__.py
本身就是一个模块。模块 __init__.py
的模块名在此处就是 reshape
。
可以有多级层次的包结构。比如pandas的core包,含有如下的目录结构:
img
6.3 库
库是指具有相关功能模块的集合。这也是Python的一大特色之一,即具有强大的 标准库
、 第三方库
以及 自定义模块
。
标准库:python里那些自带的模块
第三方库:就是由其他的第三方机构,发布的具有特定功能的模块。比如2018年最受欢迎的几个库:TensorFlow、pandas、scikit-learn 、 PyTorch 、 Matplotlib 、Keras、 NumPy 、 SciPy 、 Apache MXNet 、 Theano 、 Bokeh 、 XGBoost 、 Gensim 、 Scrapy、 Caffe
自定义模块:用户自己可以自行编写模块,然后使用。
导入模块与包都是通过import来导入的