当前位置:
首页 > Python基础教程 >
-
Python中Pandas库的数据处理与分析
一、Pandas的数据结构
Pandas主要有两种数据结构:Series和DataFrame。
-
Series
Series是一种类似于一维数组的对象,它由一组数据和一组与之相关的数据标签(即索引)组成。
import pandas as pd
s = pd.Series([1, 3, 5, np.nan, 6, 8])
print(s)
-
DataFrame
DataFrame是一种二维的表格型数据结构,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。
import pandas as pd
data = {'Country': ['Belgium', 'India', 'Brazil'],
'Capital': ['Brussels', 'New Delhi', 'Brasília'],
'Population': [11190846, 1303171035, 207847528]}
df = pd.DataFrame(data, columns=["Country", "Capital", "Population"])
print(df)
二、数据读取与写入
Pandas提供了一些用于将表格型数据读取为DataFrame对象的函数,支持多种格式的数据,如csv、excel、json、html、sql等。
import pandas as pd
# 从CSV文件中读取数据
df = pd.read_csv('file.csv')
# 将数据写入CSV文件中
df.to_csv('file.csv')
三、数据选择与操作
Pandas提供了多种方式进行数据的选择与操作。
import pandas as pd
# 创建一个数据集
data = {'Name': ['Tom', 'Nick', 'John', 'Tom'],
'Age': [20, 21, 19, 20],
'Country':['US', 'UK', 'US', 'UK']}
df = pd.DataFrame(data)
# 选择'Name'列
df['Name']
# 选择第0行
df.iloc[0]
# 选择满足条件的行
df[df.Age > 20]
# 对'Age'列进行求和
df['Age'].sum()
# 对'Country'列进行计数
df['Country'].value_counts()
Pandas的功能远不止这些,还包括合并、分组、缺失数据处理、数据透视表等高级功能,为数据处理和分析提供了强大的工具。
到此这篇关于Python中Pandas库的数据处理与分析的文章就介绍到这了,更多相关Python Pandas库内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
原文链接:https://juejin.cn/post/7253391363453747258
栏目列表
最新更新
求1000阶乘的结果末尾有多少个0
详解MyBatis延迟加载是如何实现的
IDEA 控制台中文乱码4种解决方案
SpringBoot中版本兼容性处理的实现示例
Spring的IOC解决程序耦合的实现
详解Spring多数据源如何切换
Java报错:UnsupportedOperationException in Col
使用Spring Batch实现批处理任务的详细教程
java中怎么将多个音频文件拼接合成一个
SpringBoot整合ES多个精确值查询 terms功能实
SQL Server 中的数据类型隐式转换问题
SQL Server中T-SQL 数据类型转换详解
sqlserver 数据类型转换小实验
SQL Server数据类型转换方法
SQL Server 2017无法连接到服务器的问题解决
SQLServer地址搜索性能优化
Sql Server查询性能优化之不可小觑的书签查
SQL Server数据库的高性能优化经验总结
SQL SERVER性能优化综述(很好的总结,不要错
开启SQLSERVER数据库缓存依赖优化网站性能
uniapp/H5 获取手机桌面壁纸 (静态壁纸)
[前端] DNS解析与优化
为什么在js中需要添加addEventListener()?
JS模块化系统
js通过Object.defineProperty() 定义和控制对象
这是目前我见过最好的跨域解决方案!
减少回流与重绘
减少回流与重绘
如何使用KrpanoToolJS在浏览器切图
performance.now() 与 Date.now() 对比