当前位置:
首页 > Python基础教程 >
-
Python 中list ,set,dict的大规模查找效率对比详解
这篇文章主要介绍了Python 中list ,set,dict的大规模查找效率对比详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
很多时候我们可能要频繁的进行元素的find 或in操作,本人一直天真的以为python的list做了hash,通过红黑树来高效查找···直到今天我真正来测试它和set,dict的查找效率时,才发现自已想太多了!!!!
先看代码:
__author__ = 'jmh081701'
import numpy
import time
l=[]
sl=set()
dl=dict()
r=numpy.random.randint(0,10000000,100000)
for i in range(0,100000):
l.append(r[i])
sl.add(r[i])
dl.setdefault(r[i],1)
#生成3种数据结构供查找,常规的list,集合sl,字典dl.里面的元素都是随机生成的,为什么要随机生成元素?这是防止某些结构对有序数据的偏向导致测试效果不客观。
start=time.clock()
for i in range(100000):
t=i in sl
end=time.clock()
print("set:",end-start)
#计算通过set来查找的效率
start=time.clock()
for i in range(100000):
t=i in dl
end=time.clock()
print("dict:",end-start)
#计算通过dict的效率
start=time.clock()
for i in range(100000):
t=i in l
end=time.clock()
print("list:",end-start)
#计算通过list的效率
结果:
set: 0.01762632617301519
dict: 0.021149536796960248
······
···
··
呵呵呵呵···list等了20分钟都没出结果。
所以···结果一览无余啊。
查找效率:set>dict>list
单次查询中:看来list 就是O(n)的;而set做了去重,本质应该一颗红黑树(猜测,STL就是红黑树),复杂度O(logn);dict类似对key进行了hash,然后再对hash生成一个红黑树进行查找,其查找复杂其实是O(logn),并不是所谓的O(1)。O(1)只是理想的实现,实际上很多hash的实现是进行了离散化的。dict比set多了一步hash的过程,so 它比set慢,不过差别不大。
so,如果是要频繁的查找,请使用set吧!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
原文链接:https://blog.csdn.net/jmh1996/article/details/78481365
栏目列表
最新更新
求1000阶乘的结果末尾有多少个0
详解MyBatis延迟加载是如何实现的
IDEA 控制台中文乱码4种解决方案
SpringBoot中版本兼容性处理的实现示例
Spring的IOC解决程序耦合的实现
详解Spring多数据源如何切换
Java报错:UnsupportedOperationException in Col
使用Spring Batch实现批处理任务的详细教程
java中怎么将多个音频文件拼接合成一个
SpringBoot整合ES多个精确值查询 terms功能实
SQL Server 中的数据类型隐式转换问题
SQL Server中T-SQL 数据类型转换详解
sqlserver 数据类型转换小实验
SQL Server数据类型转换方法
SQL Server 2017无法连接到服务器的问题解决
SQLServer地址搜索性能优化
Sql Server查询性能优化之不可小觑的书签查
SQL Server数据库的高性能优化经验总结
SQL SERVER性能优化综述(很好的总结,不要错
开启SQLSERVER数据库缓存依赖优化网站性能
uniapp/H5 获取手机桌面壁纸 (静态壁纸)
[前端] DNS解析与优化
为什么在js中需要添加addEventListener()?
JS模块化系统
js通过Object.defineProperty() 定义和控制对象
这是目前我见过最好的跨域解决方案!
减少回流与重绘
减少回流与重绘
如何使用KrpanoToolJS在浏览器切图
performance.now() 与 Date.now() 对比