VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > Python基础教程 >
  • pandas时间序列之pd.to_datetime()的实现

本文主要介绍了pandas时间序列之pd.to_datetime()的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

解析来自各种来源和格式的时间序列信息

pd.to_datetime(
    arg,#int, float, str, datetime, list, tuple, 1-d array, Series DataFrame/dict-like
    errors='raise',# {'ignore', 'raise', 'coerce'}, default 'raise'
    dayfirst=False,
    yearfirst=False,
    utc=None,
    format=None,#格式,比如 "%d/%m/%Y"
    exact=True,
    unit=None,#单位str, default 'ns',可以是(D,s,ms,us,ns)
    infer_datetime_format=False,
    origin='unix',#指定从什么时间开始,默认为19700101
    cache=True,
)

时间序列解析之小试牛刀
pd.to_datetime()

import datetime
import pandas as pd
import numpy as np
dti = pd.to_datetime(['1/1/2018', np.datetime64('2018-01-01'),
                      datetime.datetime(2018, 1, 1)])
dti

DatetimeIndex([‘2018-01-01’, ‘2018-01-01’, ‘2018-01-01’], dtype=‘datetime64[ns]’, freq=None)

pd.to_datetime(['2020-04-20', '20/04/2020','Apr 20 2020'])
DatetimeIndex([‘2020-04-20’, ‘2020-04-20’, ‘2020-04-20’], dtype=‘datetime64[ns]’, freq=None)

import time
time.asctime()

‘Tue Apr 7 21:50:17 2020’

pd.to_datetime(time.asctime())
Timestamp(‘2020-04-07 21:50:17’)

还有更加偷懒的办法,假如整理数据时遇到了大量的时间需要输入,比如2020-11-11 00:00:00,输入-和:太浪费时间了,而且时间之间没有什么变化规律可循,这种情况下可以直接输入20201111000000进行记录,之后再借助pd.to_datetime()解析,省时省力一步到位。

pd.to_datetime('20201111000000')
Timestamp(‘2020-11-11 00:00:00’)

时间序列解析之磨刀霍霍

  1. 指定识别的format

pd.to_datetime('2020/12/12', format='%Y/%m/%d')
Timestamp(‘2020-12-12 00:00:00’)

pd.to_datetime('12-11-2010 00:00', format='%d-%m-%Y %H:%M')
Timestamp(‘2010-11-12 00:00:00’)

  1. 遇到DataFrame
df = pd.DataFrame({'year': [2015, 2016],
   ....:                    'month': [2, 3],
   ....:                    'day': [4, 5],
   ....:                    'hour': [2, 3]})
df

year month day hour
0 2015 2 4 2
1 2016 3 5 3

pd.to_datetime(df)
0 2015-02-04 02:00:00
1 2016-03-05 03:00:00
dtype: datetime64[ns]

pd.to_datetime(df[['year','month','day']])
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]

  1. 遇到不能识别的处理方法

pd.to_datetime(['2009/07/31', 'asd'], errors='ignore')
Index([‘2009/07/31’, ‘asd’], dtype=‘object’)

pd.to_datetime(['2009/07/31', 'asd'], errors='raise')
ParserError: Unknown string format: asd

pd.to_datetime(['2009/07/31', 'asd'], errors='coerce')
DatetimeIndex([‘2009-07-31’, ‘NaT’], dtype=‘datetime64[ns]’, freq=None)

  1. origin的用法
    指定时间

pd.to_datetime([1, 2, 3], unit='D', origin=pd.Timestamp('1960-01-01'))

DatetimeIndex([‘1960-01-02', ‘1960-01-03', ‘1960-01-04'], dtype=‘datetime64[ns]', freq=None)
不指定时间则默认从19700101开始

pd.to_datetime([1, 2, 3], unit='D')

DatetimeIndex([‘1970-01-02', ‘1970-01-03', ‘1970-01-04'], dtype=‘datetime64[ns]', freq=None)
到此这篇关于pandas时间序列之pd.to_datetime()的实现的文章就介绍到这了,更多相关pandas pd.to_datetime()内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

原文链接:https://blog.csdn.net/m0_46589710/article/details/105383299


相关教程