当前位置:
首页 > Python基础教程 >
-
Python使用sklearn库实现的各种分类算法简单应用小结
这篇文章主要介绍了Python使用sklearn库实现的各种分类算法,结合实例形式分析了Python使用sklearn库实现的KNN、SVM、LR、决策树、随机森林等算法实现技巧,需要的朋友可以参考下
本文实例讲述了Python使用sklearn库实现的各种分类算法简单应用。分享给大家供大家参考,具体如下:
KNN
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
def KNN(X,y,XX):#X,y 分别为训练数据集的数据和标签,XX为测试数据
model = KNeighborsClassifier(n_neighbors=10)#默认为5
model.fit(X,y)
predicted = model.predict(XX)
return predicted
SVM
from sklearn.svm import SVC
def SVM(X,y,XX):
model = SVC(c=5.0)
model.fit(X,y)
predicted = model.predict(XX)
return predicted
SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
grid_search.fit(train_x, train_y)
best_parameters = grid_search.best_estimator_.get_params()
for para, val in list(best_parameters.items()):
print(para, val)
model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
model.fit(train_x, train_y)
return model
LR
from sklearn.linear_model import LogisticRegression
def LR(X,y,XX):
model = LogisticRegression()
model.fit(X,y)
predicted = model.predict(XX)
return predicted
决策树(CART)
from sklearn.tree import DecisionTreeClassifier
def CTRA(X,y,XX):
model = DecisionTreeClassifier()
model.fit(X,y)
predicted = model.predict(XX)
return predicted
随机森林
from sklearn.ensemble import RandomForestClassifier
def CTRA(X,y,XX):
model = RandomForestClassifier()
model.fit(X,y)
predicted = model.predict(XX)
return predicted
GBDT(Gradient Boosting Decision Tree)
from sklearn.ensemble import GradientBoostingClassifier
def CTRA(X,y,XX):
model = GradientBoostingClassifier()
model.fit(X,y)
predicted = model.predict(XX)
return predicted
朴素贝叶斯:一个是基于高斯分布求概率,一个是基于多项式分布求概率,一个是基于伯努利分布求概率。
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import BernoulliNB
def GNB(X,y,XX):
model =GaussianNB()
model.fit(X,y)
predicted = model.predict(XX)
return predicted
def MNB(X,y,XX):
model = MultinomialNB()
model.fit(X,y)
predicted = model.predict(XX
return predicted
def BNB(X,y,XX):
model = BernoulliNB()
model.fit(X,y)
predicted = model.predict(XX
return predicted
希望本文所述对大家Python程序设计有所帮助。
原文链接:https://blog.csdn.net/Yeoman92/article/details/74942125
栏目列表
最新更新
求1000阶乘的结果末尾有多少个0
详解MyBatis延迟加载是如何实现的
IDEA 控制台中文乱码4种解决方案
SpringBoot中版本兼容性处理的实现示例
Spring的IOC解决程序耦合的实现
详解Spring多数据源如何切换
Java报错:UnsupportedOperationException in Col
使用Spring Batch实现批处理任务的详细教程
java中怎么将多个音频文件拼接合成一个
SpringBoot整合ES多个精确值查询 terms功能实
SQL Server 中的数据类型隐式转换问题
SQL Server中T-SQL 数据类型转换详解
sqlserver 数据类型转换小实验
SQL Server数据类型转换方法
SQL Server 2017无法连接到服务器的问题解决
SQLServer地址搜索性能优化
Sql Server查询性能优化之不可小觑的书签查
SQL Server数据库的高性能优化经验总结
SQL SERVER性能优化综述(很好的总结,不要错
开启SQLSERVER数据库缓存依赖优化网站性能
uniapp/H5 获取手机桌面壁纸 (静态壁纸)
[前端] DNS解析与优化
为什么在js中需要添加addEventListener()?
JS模块化系统
js通过Object.defineProperty() 定义和控制对象
这是目前我见过最好的跨域解决方案!
减少回流与重绘
减少回流与重绘
如何使用KrpanoToolJS在浏览器切图
performance.now() 与 Date.now() 对比