VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > Python基础教程 >
  • Pydantic字段元数据指南:从基础到企业级文档增强

第一章:元数据核心机制
1.1 基础元数据注入
PYTHON

from pydantic import BaseModel, Field


class Product(BaseModel):
    sku: str = Field(
        ...,
        title="产品SKU",
        description="国际标准商品编号",
        json_schema_extra={
            "x-frontend": {"widget": "search-input"},
            "example": "IPHONE-15-PRO"
        }
    )


print(Product.schema()["properties"]["sku"])

输出特征:

JSON

{
  "title": "产品SKU",
  "description": "国际标准商品编号",
  "type": "string",
  "x-frontend": {
    "widget": "search-input"
  },
  "example": "IPHONE-15-PRO"
}

第二章:动态元数据扩展
2.1 环境感知元数据
PYTHON

from pydantic import BaseModel, ConfigDict


class EnvAwareField(BaseModel):
    model_config = ConfigDict(extra="allow")

    @classmethod
    def __get_pydantic_json_schema__(cls, core_schema, handler):
        schema = handler(core_schema)
        if os.getenv("ENV") == "prod":
            schema["properties"]["api_key"]["x-mask"] = "partial"
        return schema


class SecureAPI(EnvAwareField):
    api_key: str

2.2 继承式元数据扩展
PYTHON

class BaseMetadata:
    @classmethod
    def apply_metadata(cls, field_name: str, schema: dict):
        schema[field_name].update({
            "x-requirements": ["ssl", "encryption"],
            "x-audit": True
        })


class PaymentModel(BaseMetadata, BaseModel):
    card_number: str = Field(..., json_schema_extra={"x-component": "credit-card"})

    @classmethod
    def __get_pydantic_json_schema__(cls, *args):
        schema = super().__get_pydantic_json_schema__(*args)
        cls.apply_metadata("card_number", schema)
        return schema

第三章:文档系统集成
3.1 OpenAPI扩展规范
PYTHON

class OpenAPIExtensions(BaseModel):
    class Config:
        json_schema_extra = {
            "components": {
                "securitySchemes": {
                    "OAuth2": {
                        "type": "oauth2",
                        "flows": {
                            "implicit": {
                                "authorizationUrl": "/auth",
                                "scopes": {"read": "全局读取权限"}
                            }
                        }
                    }
                }
            }
        }


class SecureEndpoint(OpenAPIExtensions):
    data: str

3.2 多语言文档支持
PYTHON

from pydantic import BaseModel, Field
from typing import Dict


class I18NField(BaseModel):
    translations: Dict[str, Dict[str, str]] = {
        "zh": {"name": "姓名", "error": "格式错误"},
        "en": {"name": "Name", "error": "Invalid format"}
    }

    @classmethod
    def build_field_schema(cls, field_name: str, lang: str):
        return {
            field_name: {
                "title": cls.translations[lang][field_name],
                "x-error": cls.translations[lang]["error"]
            }
        }


class UserForm(I18NField):
    name: str = Field(..., json_schema_extra=I18NField.build_field_schema("name", "zh"))

第四章:企业级应用
4.1 智能组件绑定
PYTHON

class FrontendIntegration(BaseModel):
    location: str = Field(
        ...,
        json_schema_extra={
            "x-component": "map-picker",
            "x-props": {
                "apiKey": "GOOGLE_MAPS_KEY",
                "defaultZoom": 12
            }
        }
    )

4.2 审计日志集成
PYTHON

class AuditableField(BaseModel):
    @classmethod
    def __get_pydantic_json_schema__(cls, core_schema, handler):
        schema = handler(core_schema)
        for field in cls.__fields__.values():
            if field.json_schema_extra.get("x-audit"):
                schema["properties"][field.name]["x-log"] = {
                    "level": "WARNING",
                    "frequency": "DAILY"
                }
        return schema


class AuditModel(AuditableField):
    salary: float = Field(..., json_schema_extra={"x-audit": True})

第五章:错误处理与优化
5.1 元数据验证机制
PYTHON

from pydantic import ValidationError

try:
    class InvalidMetadata(BaseModel):
        data: str = Field(..., json_schema_extra={"x-type": 123})
except ValidationError as e:
    print(f"元数据类型错误: {e}")

5.2 性能优化方案
PYTHON

from functools import lru_cache


class OptimizedSchema(BaseModel):
    @classmethod
    @lru_cache(maxsize=128)
    def schema(cls, **kwargs):
        return super().schema(**kwargs)


class HighPerformanceModel(OptimizedSchema):
# 高频访问模型字段定义

课后Quiz
Q1:添加前端组件定义的正确方式?
A) 使用json_schema_extra
B) 修改路由注释
C) 创建中间件

Q2:实现多语言文档的关键技术?

字段级翻译配置
全局语言中间件
数据库存储翻译
Q3:处理元数据性能问题的方案?

使用LRU缓存
禁用所有元数据
减少字段数量
错误解决方案速查表
错误码 现象 解决方案
422 元数据类型不匹配 检查json_schema_extra值类型
500 动态元数据生成失败 验证__get_pydantic_json_schema__实现
400 缺失必需扩展字段 配置默认值或可选参数
406 不支持的文档格式 添加Accept请求头指定格式
架构箴言:字段元数据应遵循”最小披露原则”,只暴露必要的文档信息。建议建立企业级元数据标准库,通过版本控制管理字段扩展,使用自动化流水线实现文档与代码的同步更新。

来源:https://blog.cmdragon.cn/posts/11d2c39a300b/


相关教程