VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > temp > 简明python教程 >
  • asyncio异步编程(9)

Future对象本身函数进行绑定,所以想要让事件循环获取Future的结果,则需要手动设置。而Task对象继承了Future对象,其实就对Future进行扩展,他可以实现在对应绑定的函数执行完成之后,自动执行set_result,从而实现自动结束。

虽然,平时使用的是Task对象,但对于结果的处理本质是基于Future对象来实现的。

扩展:支持 await 对象语 法的对象课成为可等待对象,所以 协程对象Task对象Future对象 都可以被成为可等待对象。

3.2.5 futures.Future对象

在Python的concurrent.futures模块中也有一个Future对象,这个对象是基于线程池和进程池实现异步操作时使用的对象。

1
2
3
4
5
6
7
8
9
10
11
12
port time
from concurrent.futures import Future
from concurrent.futures.thread import ThreadPoolExecutor
from concurrent.futures.process import ProcessPoolExecutor
def func(value):
    time.sleep(1)
    print(value)
pool = ThreadPoolExecutor(max_workers=5)
# 或 pool = ProcessPoolExecutor(max_workers=5)
for in range(10):
    fut = pool.submit(func, i)
    print(fut)

两个Future对象是不同的,他们是为不同的应用场景而设计,例如:concurrent.futures.Future不支持await语法 等。

官方提示两对象之间不同:

在Python提供了一个将futures.Future 对象包装成asyncio.Future对象的函数 asynic.wrap_future

接下里你肯定问:为什么python会提供这种功能?

其实,一般在程序开发中我们要么统一使用 asycio 的协程实现异步操作、要么都使用进程池和线程池实现异步操作。但如果 协程的异步和 进程池/线程池的异步 混搭时,那么就会用到此功能了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import time
import asyncio
import concurrent.futures
def func1():
    # 某个耗时操作
    time.sleep(2)
    return "SB"
async def main():
    loop = asyncio.get_running_loop()
    # 1. Run in the default loop's executor ( 默认ThreadPoolExecutor )
    # 第一步:内部会先调用 ThreadPoolExecutor 的 submit 方法去线程池中申请一个线程去执行func1函数,并返回一个concurrent.futures.Future对象
    # 第二步:调用asyncio.wrap_future将concurrent.futures.Future对象包装为asycio.Future对象。
    # 因为concurrent.futures.Future对象不支持await语法,所以需要包装为 asycio.Future对象 才能使用。
    fut = loop.run_in_executor(None, func1)
    result = await fut
    print('default thread pool', result)
    # 2. Run in a custom thread pool:
    # with concurrent.futures.ThreadPoolExecutor() as pool:
    #     result = await loop.run_in_executor(
    #         pool, func1)
    #     print('custom thread pool', result)
    # 3. Run in a custom process pool:
    # with concurrent.futures.ProcessPoolExecutor() as pool:
    #     result = await loop.run_in_executor(
    #         pool, func1)
    #     print('custom process pool', result)
asyncio.run(main())

相关教程