-
python爬虫之NumPy常用方法总结(5)
本站最新发布 Python从入门到精通|Python基础教程
试听地址 https://www.xin3721.com/eschool/pythonxin3721/
试听地址 https://www.xin3721.com/eschool/pythonxin3721/
矩阵的遍历
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
>>> import numpy as np >>> b = np.arange(16).reshape(4, 4) >>> for row in b: ... print(row) ... [0 1 2 3] [4 5 6 7] [ 8 9 10 11] [12 13 14 15] >>> for node in b.flat: ... print(node) ... 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
矩阵的特殊运算
改变矩阵形状--reshape
1
2
3
4
5
6
7
8
9
10
11
|
>>> a = np.floor(10 * np.random.random((3,4))) >>> a array([[ 6., 5., 1., 5.], [ 5., 5., 8., 9.], [ 5., 5., 9., 7.]]) >>> a.ravel() array([ 6., 5., 1., 5., 5., 5., 8., 9., 5., 5., 9., 7.]) >>> a array([[ 6., 5., 1., 5.], [ 5., 5., 8., 9.], [ 5., 5., 9., 7.]]) |
resize和reshape的区别
resize会改变原来的矩阵,reshape并不会
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
>>> a array([[ 6., 5., 1., 5.], [ 5., 5., 8., 9.], [ 5., 5., 9., 7.]]) >>> a.reshape(2,-1) array([[ 6., 5., 1., 5., 5., 5.], [ 8., 9., 5., 5., 9., 7.]]) >>> a array([[ 6., 5., 1., 5.], [ 5., 5., 8., 9.], [ 5., 5., 9., 7.]]) >>> a.resize(2,6) >>> a array([[ 6., 5., 1., 5., 5., 5.], [ 8., 9., 5., 5., 9., 7.]]) |
栏目列表
最新更新
如何使用OS模块中的stat方法
Python os 模块
seek() 方法
python打开文件实例1
Python写入文件
什么是流?
文件操作如何进制逐行读取
Python相对路径
with创建临时运行环境
Python文件操作
.Net Standard(.Net Core)实现获取配置信息
Linux PXE + Kickstart 自动装机
Shell 编程 基础
Shell 编程 条件语句
CentOS8-网卡配置及详解
Linux中LVM逻辑卷管理
1.数码相框-相框框架分析(1)
Ubuntu armhf 版本国内源
Linux中raid磁盘阵列
搭建简易网站
access教程之Access简介
mysql 安装了最新版本8.x版本后的报错:
Mysql空间数据&空间索引(spatial)
如何远程连接SQL Server数据库的图文教程
复制SqlServer数据库的方法
搜索sql语句
sql中返回参数的值
sql中生成查询的模糊匹配字符串
数据定义功能
数据操作功能