-
python爬虫之机器学习算法的随机数据生成总结(3)
本站最新发布 Python从入门到精通|Python基础教程
试听地址 https://www.xin3721.com/eschool/pythonxin3721/
试听地址 https://www.xin3721.com/eschool/pythonxin3721/
输出的图如下:
3.3 聚类模型随机数据
这里我们用make_blobs生成聚类模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数),centers(簇中心的个数或者自定义的簇中心)和cluster_std(簇数据方差,代表簇的聚合程度)。例子如下:
1
2
3
4
5
6
7
8
|
import numpy as np import matplotlib.pyplot as plt % matplotlib inline from sklearn.datasets.samples_generator import make_blobs # X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共3个簇,簇中心在[-1,-1], [1,1], [2,2], 簇方差分别为[0.4, 0.5, 0.2] X, y = make_blobs(n_samples = 1000 , n_features = 2 , centers = [[ - 1 , - 1 ], [ 1 , 1 ], [ 2 , 2 ]], cluster_std = [ 0.4 , 0.5 , 0.2 ]) plt.scatter(X[:, 0 ], X[:, 1 ], marker = 'o' , c = y) plt.show() |
输出的图如下:
3.4 分组正态分布混合数据
我们用make_gaussian_quantiles生成分组多维正态分布的数据。几个关键参数有n_samples(生成样本数), n_features(正态分布的维数),mean(特征均值), cov(样本协方差的系数), n_classes(数据在正态分布中按分位数分配的组数)。 例子如下:
1
2
3
4
5
6
7
|
import numpy as np import matplotlib.pyplot as plt % matplotlib inline from sklearn.datasets import make_gaussian_quantiles #生成2维正态分布,生成的数据按分位数分成3组,1000个样本,2个样本特征均值为1和2,协方差系数为2 X1, Y1 = make_gaussian_quantiles(n_samples = 1000 , n_features = 2 , n_classes = 3 , mean = [ 1 , 2 ],cov = 2 ) plt.scatter(X1[:, 0 ], X1[:, 1 ], marker = 'o' , c = Y1) |
输出图如下
以上就是生产随机数据的一个总结,希望可以帮到学习机器学习算法的朋友们。
栏目列表
最新更新
如何使用OS模块中的stat方法
Python os 模块
seek() 方法
python打开文件实例1
Python写入文件
什么是流?
文件操作如何进制逐行读取
Python相对路径
with创建临时运行环境
Python文件操作
.Net Standard(.Net Core)实现获取配置信息
Linux PXE + Kickstart 自动装机
Shell 编程 基础
Shell 编程 条件语句
CentOS8-网卡配置及详解
Linux中LVM逻辑卷管理
1.数码相框-相框框架分析(1)
Ubuntu armhf 版本国内源
Linux中raid磁盘阵列
搭建简易网站
access教程之Access简介
mysql 安装了最新版本8.x版本后的报错:
Mysql空间数据&空间索引(spatial)
如何远程连接SQL Server数据库的图文教程
复制SqlServer数据库的方法
搜索sql语句
sql中返回参数的值
sql中生成查询的模糊匹配字符串
数据定义功能
数据操作功能